
A FINAL REPORT TO

N

MANPOWER RESEARCH AND DEVELOPMENT
o PROGRAM

by

Jeffery L. Kennington & Richard V. Helgason
Department of Computer Science and Engineering

Southern Methodist University
- Dallas, TX 75275

" (214)-692-3099
0% JUL 18 9

JUL 1~3for

Optimization Algorithms for New Computer
Architectures With Applications to Personnel

Assignment Models

June 29, 1989
Ap;.:

ONR N00014-87-K-0223

SMU # 5-25105

'., i~ k;-

• a a i8

Unclassified
SECLR!'; CL SSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICAI ION lb. RESTRICTIVE MARKINGS

Unclassified
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/OOWNGRADING SCHEDULE

a PERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBER(SI

6a NAME OF PERFORMING ORGANIZATION .D. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(Ia .pplicabie)

Southern Methodist University CSE

c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (Ci,. Slate and ZIP Code)

Dallas, TX 75229

Be. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMOEFi
ORGANIZATION (it alpplicable)

Office of Naval Research 0NR

Sc. ADDRESS (CIty. Stale and ZIP Code) 10 SOURCE OF FUNDING NOS.

Office of Naval Research PROGRAM PROJECT TASK WORK UNIT

800 North Quincy Street ELEMENT NO, NO. NO. No.

Arlington, VA 22217-5000
11 TITLE linclud. Security Clauificationi

12, PERSONAL AUTHOR(S) Jeffery L. Kennington and Richard V. Helgason

13a. TYPE OF REPORT ' 3o. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

Annual FROM88/05/01 T089/04/3 89/06/29 j 94

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 19 SUBJECT TERMS (Continue on revene ifReceserd and idmntify by block number

FIELD GROUP SUe GR. parallel programming, optimization, networks

19. ABSTRACT ICoRIrnue On reverse if neceaary and idenhfy by block number)

One of the most important computer architecture innovations to appear in the

market place during the last ten years is parallel processing on a shared memory

multicomputer. This report presents our empirical results on a Sequent Symmetry S81

on four optimization models which are used in the area of personnel assignment.

Both the detailed algorithms and computational results are presented.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIRPITED) SAME AS RPT, [OTIC USERS 0 Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL
(include Apra Code)

Jeffery L. Kennington (214)-692-3099 CSE

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE, Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Table of Contents

Statement of Work 1

Accomplishments and Publications 1

Personnel 5

Presentations 5

Interaction With The Navy Personnel Research and
Development Center 6

Technical Report 87-OR-02: Minimal Spanning Trees: -An

Empirical Investigation of Parallel Algorithms 7

Technical Report 88-OR-13: Dijkstra's Two-tree Shortest Path
Algorithm 29

Technical Report 88-OR-16: An Empirical Analysis of the
Dense Assignment Problem 52

Technical Report 88-OR-21: Solving Generalized Network
Problems on a Shared Memory Multiprocessor 71

Aqceston For
NTIS CRA&I

[riC TAB I
U .. . L L

,. i t[" '"

. ..C,. : i ,0 . .

STATEMENT OF WORK

Many Navy applications in the area of personnel assignment demand com-

puter hardware several orders of magnitude faster than the fastest machines
available. Computer designers (including Seymour Cray) have turned to par-
allelism as one of the more promising avenues for increased computational

speed. Parallelism shifts some of the burden for increased speed from the
hardware to the software engineer. Very powerful hardware (in terms of mil-
lions of floating point operations per second) can be built using many low cost

standard chips, all designed to operate in parallel. Our research program ob-
jective is to develop and empirically test new parallel algorithms and software

for a wide variety of optimization problems. The problems studied this past
year include the the mimimal spanning tree problem, the shortest path prob-

len, the dense assignment problem, and the generalized network model. Par-
allel algorithms were developed and implemented on a Sequent Symmetry S81
multicomputer having twenty computational processing units (cpu's). We also
assisted the Navy Personnel Research and Development Center in developing
and analyzing readiness models.

ACCOMPLISHMENTS AND PUBLICATIONS

The following is a list of the papers completed during the last year, an execu-
tive summary of the paper, and the publication status. These four papers also

appear in this document.

Title

Minimal Spanning Trees: An Empirical Investigation of Parallel Algorithms,

Technical Report 87-OR-02

Authors

R. S. Barr, R. V. Helgason, and J. L. Kennington

Executive Summary

This was our first empirical investigation using the Sequent Symmetry S81
multicomputer for parallel processing research. This problem was selected
because the algorithms for sequential machines are straightforward and we

- 1 -

could concentrate our efforts on parallelization and learning the idiosyncrasies

of the S81 system. We achieved speedups which ranged from a low of 2.79 to

a high of 6.81 using ten processors.

Publication Status

This paper has been accepted for publication in Parallel Computing.

Title

Dijkstra's Two-tree Shortest Path Algorithm, Technical Report 88-OR-13

Authors

R. V. Helgason, J. L. Kennington, and B. D. Stewart

Executive Summary

The problem of finding the shortest path between a designated pair of nodes

in a graph is a fundamental problem in operations research which also serves

as a building block for other algorithms such as the out-of-kilter algorithm

and the shortest augmenting path algorithm. The classical Dijkstra algorithm

begins at one of the designated nodes and fans out from this node until the

other designated node becomes a member of the labeled set. In this investiga-

tion we empirically demonstrate that a better algorithm is obtained by a proce-

dure that begins at both designated nodes and fans out in both directions.

This is accomplished mathematically by building trees rooted at the two desig-

nated nodes. The algorithm stops when any node appears in both trees.

Publication Status

Additional empirical tests have been performed on a wide variety of problems

and the paper is being revised to reflect this analysis. We anticipate submit-

ting the revised paper for publication by the end of August.

2 -

Title

An Empirical Analysis of the Dense Assignment Problem, Technical Report
88-OR-16

Authors

J. Kennington and Z. Wang

Executive Summary

There are three methods for comparing algorithms, (i) worst case analysis, (ii)
average case analysis, and (iii) empirical analysis. Each technique has its
strengths and each has its weaknesses. We performed a thorough empirical
analysis comparing the auction algorithm with the shortest augmenting path
algorithm (SAP) for the dense assignment problem. We found that the soft-
ware implementation of the SAP algorithm was superior on serial machines.
A parallel implementation of this software yielded speedups of four using ten
processors. It appears to us that this problem is solved. We successfully
solved problems having over one million arcs in less than 20 seconds on a
Sequent Symmetry S81.

Publication Status

This paper has been submitted for publication and is currently under review.

Title

Solving Generalized Network Problems on a Shared Memory Multiprocessor,

Technical Report 88-OR-21

Authors

J. Kennington and R. Muthukrishnan

Executive Summary

The generalized network problem in its most general form is a special case of
a linear program in which every column of the constraint matrix has at most
two nonzero elements. Special cases of this model include the flow with gains

-3 -

problem, the minimal cost network flow problem, the transportation problem,
the assignment problem, the maximal flow problem, and the shortest path
problem. In this study we empirically demonstrate that specialized software
for this model is an order of magnitude faster than MPSX. This algorithm
was parallelized and speedups of from two to three were achieved on a Se-

quent Symmetry S81 multicomputer using eight processors.

Publication Status

Professor Robert Meyer and his Ph.D. student Robert Clark of the University

of Wisconsin have independently and simultaneously been working on a paral-

lelization of the simplex algorithm for the generalized network problem. We

are combining forces with this group to combine our work presented in this

paper with their work in an attempt to write the definitive paper on the sub-

ject. Professor Kennington visited the University of Wisconsin in June 1989,
and we expect to complete this joint paper by the end of August 1989.

PERSONNEL

Faculty

Jeffery L. Kennington

Richard V. Helgason

Ph.D Students

Muthukrishnan Ramamurti
Ph.D. received May 1989

Dissertation Title: Parallel Algorithms for Generalized Networks

Levent Hatay,
D. Eng. received May 1989
Praxis Title: Sequential and Parallel Algorithms for the

Shortest-Path Problem

Kumar Thiagarajan

-4 -

Zhiming Wang

Betty Hickman

PRESENTATIONS

Denver ORSAiTIMS Fall 1988

An Asynchronous Algorithm to Solve Generalized Network Problems, J. Ken-

nington & R. Muthukrishnan

Hierarchical Graph Partitioning for MIMD Computers, R. Barr, R. Helgason,
D. Matula, & K. Thiagarajan

The Transportation Problem: A Shortest Augmenting Path Algorithm, Z.
Wang

Vancouver CORS/TIMS/ORSA Spring 1989

Network Flow Problems: Parallel Algorithms and Computational Experience,

J. Kennington

Identifying the Vertices of the Convex Hull of a Finite Set of Points, J. Dula,
R. Helgason, & K. Thiagarajan

Solving Assignment Problems on a Shared Memory Multiprocessor, Z. Wang

Parallelization Strategies for the Network Simplex Algorithm, B. Hickman &

R. Barr

INTERACTION WITH NAVY PERSONNEL RESEARCH
AND DEVELOPMENT CENTER

The Navy Personnel Research and Development Center located at San Diego,

California is a co-sponsor of this research. Professor Kennington met with

-5 -

Dr. losef Krass at the Denver ORSA/TIMS Meeting and with Mr. Ted
Thompson and Mr. Joe Blanco at the Vancouver CORS/ORSA/TIMS Meet-
ing. Professor Kennington visited NPRDC during the summer of 1988 and
gave a seminar on parallel processing to the operations research group. We
have also had many phone conversations with both Dr. Timothy Liang, Mr.
Ted Thompson, and Mr. Alan Whisman regarding several of their models.
Our main goal in this work is basic research, but we also serve NPRDC as
technical advisors and provide them with specialized network software that
our group has developed over the years.

6 -

Technical Report 87-OR-02

MINIMAL SPANNING TREES:
AN EMPIRICAL INVESTIGATION OF PARALLEL

ALGORITHMS

by

R.S. Barr

R.V. Helgaon

and

J.L. Kennington

Department of Operations Research and Engineering Management
School of Engineering and Applied Science

Southern Methodist University
Dallas, Texas 75275

revised March 1989

Comments and criticisms from interested readers are cordially invited.

-7-

ABSTRACT

The objective of this investigation is to empirically test parallel algorithms for finding

minimal spanning trees. Computational tests were conducted on three serial versions of

Prim's algorithm, a s.rial version of Kruskal's algorithm, and a serial version of the

Sollin's algorit!' .. For complete graphs, our implementation of the Prim algorithm is

best. %s the graph density is reduced, our implementation of Kruskal's algorithm is

superior, and for very sparse graphs, the Sollin algorithm dominates. Parallel implemen-

tations of both the Prim algorithm and the Sollin algorithm were empirically tested on a

Sequent Symmetry S81 multicomputer. In tests involving ten processors, the speedups

ranged from a low of 2.79 to a high of 6.81.

ACKNOWLEDGMENT

This research was supported in part by the Department of Defense under Contract

Number MIDA 903-86-C-0182, the Air Force Office of Scientific Research under contract

Numbers AFOSR 83-0278 and AFOSR 87-0199, the Office of Naval Research under

Contract Number N00014-87-K-0223, and ROME Air Development Center under Con-

tract Number SCEEE PDP/86-75. The authors wish to express their appreciation to Pro-

fessor Hossam Zaki of the University of Illinois and Professor Iqbal Ali of the University

of Massachusetts at Amherst for their helpful comments.

-8-

I. INTODUCTION

The new generation of computing hardware based on parallel processing technology

requires that algorithm engineers redesign and reevaluate the standard methods. It may

well be that algorithms which proved to be superior for single-processor machines may

prove to be in'.,ior in some of the new parallel processing environments. One of the

more popular new parallel machines is Sequent Computer Systems' Symmetry S81. The

objective of this investigation is to computationally test parallel algorithms for finding

minimal spanning trees on a twelve-processor Symmetry 881.

An undirected graph G = [V,El consists of a vertex set V and an edge set E. Without

loss of generality we assume that the edges are distinct. If G' = [V, E'l is a subgraph of

G, then G is called a spannin g subgraph for G. If, in addition, G' is a tree, then G' is

called a spannin_ tree for G. A graph whose components are trees is called a forest, and

a spanning subgraph for G, which is also a forest, is called a spanning forest for G. We

will call {[{ui}, D] : ui E V} the tril spanning forest for G and each [{ui}, 4)] a trivial

tree. Associated with each edge (u,v) is a real-valued cost c(u,v). The minimum span-

nine tree problem may be stated as follows: Given a connected undirected graph each of

whose edges has a real-value cost, find a spanning tree of the graph whose total edge cost

is minimum.

Applications (see Christofides [41) include the design of a distribution network in

which the nodes represent cities or towns and the edges represent electrical power lines,

water lines, natural gas lines, communication links, etc. The objective is to design a

network which uses the least length of cable or pipe. The minimum spanning tree prob-

lem is also used as a subproblem for algorithms for the traveling salesman problem (see

Held and Karp [6, 7] and Ali and Kennington [3]). Some vehicle routing algorithms

require the solution of a traveling salesman problem on a subset of nodes. Hence, a wide

variety of applications require the solution of minimal spanning trees. Some applications

-9-

require a single solution and some use the model as a subproblem within another algo-

rithm.

- 10 -

II. THREE CLASSICAL ALGORITHMS

The algorithms in current use may be traced to ideas developed by Prim, Kruskal, and

Sollin. These three classical algorithms all begin with the trivial spanning forest

Go = {[Vi, Ti], i = 0, . . . ,IVI - 1). A sequence of spanning forests is obtained by merging

spanning forest components. Given spanning forest Gk, a nonforest edge (u,v) is selected

and the components [Vi, Ti] and [Vj, T J with u E Vi and v E Vi are removed from Gk

and replaced by [Vt, Tt], where I = k + IVI, V, = Vi U Vj, and Tt = Ti U Tj U {(u, v)},

yielding spanning forest Gk+l. After m = IVI-1 edges have been selected,

Gm = {[V2m, T2m]} is a minimal spanning tree for G.

Let [Vi, T] and [Vj, TJ] denote two disjoint subtrees of G and define the shortest dis-

tance between the trees by dij = min {c(u,v): (u,v)E E, u E Vi, v E Vj}. Let

Fij = {(u, v) : (u, v) E E, u E Vi, v E Vj, c(u, v) = dij). The nonforest edge selected must

be an element of Fij for some (i,j) pair. The three classical algorithms may be viewed as

using different selection methods for the nonforest edge from among all Fij.

In Prim's algorithm, the nonforest edge (u,v) for Gk is always selected so that

(u,v)E Vi x Vj., where j* is the largest index j such that [Vj, Tj] is a component of Gk.

Thus a single component continues to grow as trivial trees disappear. An excellent de-

scription of Prim's algorithm is given ii. Papadimitriou and Steiglitz [15, p. 273], along

with its (serial) computational complexity of O(V12). It is believed that this algorithm is

best suited for dense graphs.

In the Sollin algorithm, the nonforest edge (u,v) for Gk is always selected so that

(u,v)E Vi. X Vj, where i* is the smallest index i such that [Vj, Tj] is a component of Gi.

Thus a variety of different-sized components may be produced as the algorithm proceeds.

All trivial trees will be removed first in the early stages of this algorithm. A description

of the Sollin algorithm is given in Papadimitriou and Steiglitz [15, p. 2771, along with its

- 11 -

(serial) computational complexity of O(EI log IVI). This algorithm appears to be best

suited for sparse graphs.

Kruskal's method may be viewed as an application of the greedy algorithm. The

minimum spanning tree is constructed by examining the edges in order of increasing cost.

If an edge forms a cycle within a component of Gk, it is discarded. Otherwise, it is

selected and yields Gk+l. Here also different-sized components may be produced. A

description of Kruskal's algorithm is given in Sedgewick [18, pp. 412-413], along with its

(serial) computational complexity of O(IEI log IEI).

- 12-

III. COMPUTATIONAL RESULTS WITH SEQUENTIAL ALGORITHMS

Computer codes for the Sollin algorithm, Kruskal's algorithm, and three versions of

Prim's algorithm were developed. For the code SPARSE PRIM, additional data lists are

utilized so that the sets F[u] = {(u,v): (u,v)EE} and B[vi = {(u,v): (u,v)EE} can be quickly

determined for all u,vEV. This is called maintaining the edge data in both forward and

backward star format. DENSE PRIM maintains the edge data in an IVI x JVJ matrix.

HEAP PRIM maintains the edge data in both forward and backward star format and

makes use of a d-heap as described in Tarjan [19, p. 77]. KRUSKAL makes use of a

partial quicksort as described in [1, 8] to produce the least-cost remaining edge. SOLLIN

is a straightforward implementation of the algorithm presented in [15].

The five codes were tested on randomly generated graphs whose density varied from

100% (complete graphs) down to 0.5%. All costs were uniformly distributed on the

interval [0, maxcost] for different values of maxcost. All codes are written in FORTRAN

for the Sequent Symmetry S81 (Rev. A).

The computational results for high density graphs are presented in Tables 1 and 2. In

both tables the times are the total seconds required to solve three problems (excluding

input and output). The cost range for the problems in Table 1 is 0 to 10,000 while the

cost range for those in Table 2 is 0 to 100,000. For both tables DENSE PRIM was best

for problems having densities of 100% and 80%. However, as the density was reduced,

KRUSKAL was the best followed closely by DENSE PRIM and SPARSE PRIM. None of

the five codes were sensitive to the cost range with total times approximately the same for

both tables. SOLLIN was the clear loser for all of these experiments which is consistent

with its worst case computational complexity.

The computational results for low density (5% to 20%) random graphs is presented in

Table 3. KRUSKAL remained the clear winner, but the ranking for second through fifth

changed. SOLLIN performs much better as the density decreases, and DENSE PRIM

- 13 -

performs much worse. KRUSKAL is very robust, performing well over a wide range of

problem densities.

Computational runs for very sparse problems may be found in Table 4. For these

runs SOLLIN dominated with HEAP PRIM placing second. This is consistent with the

worst-case complexity analysis of the Sollin algorithm.

Tables 1, 2, 3, 4 About Here

- 14 -

IV. PARALLEL ALGORITHMS

Parallel versions of the three classical algorithms have appeared in the literature (see

[2, 5, 9, 10, 11, 12, 14, 16, 17]), however; no computation experience has been reported.

The overhead required for coordinating the work of multiple processors can only be deter-

mined by actual implementation and empirical investigation on a parallel processing ma-

chine. The Sequent micro-tasking software facilitates the parallel execution of subrou-

tines. The details regarding parallel processing on Sequent machines may be found in

Osterhaug [1986].

Prim's Algorithm

Let dd[v,w] denote the distance from node v to node w and let d[vJ * v denote the

node nearest node v. Prim's algorithm requires IVI-1 iterations. At iteration k, the

DENSE PRIM code executes the two modules which follow.

Module MIN

0. a *-- 0

1. for i = 1 to IVI-k

2. v,- status [ij;

3. if dd[v,d[v]j < a, then

4. a - dd[v,d[v]];

5. m- i;

6. end if

7. end for

and

- 15 -

Module UPDATE

1. for i = 1 to 1VI-k

2. v*- status[i];

3. if dd[v, d[v]] > ddv, status[m], then d[v]-status[m];

4. end for.

Suppose there are p processes and id gives the identification number (0, 1 ... , p-1) of

each of the processes. The NIN module was executed simultaneously by the processes by

modifying step 1 to be

for i = id+I to IVI-k step p

followed by setting the global minimum to the smallest of the p local minima. The

UPDATE module involves no dependencies and can be parallelized by the same modifica-

tion to step 1. A similar parallel algorithm has been described by Deo and Yoo [5].

The computational experience for a parallel version of DENSE PRIM is presented in

Table 5. The first five rows of Table 5 correspond to the five sequential codes. For test

problem #1, KRUSKAL was best with a time of 4.05 seconds while for test problem #2

DENSE PRIM was best. The speedup is calculated by dividing the best sequential time by

the parallel time. The sixth row, which gives the PARALLEL DENSE PRIM code run

with a single processor, provides a measure of the overhead for running this algorithm in

parallel. The overhead is approximately 22% for test problem #1, and 20% for test

problem #2. For the ten processor runs the speedups were 2.79 and 4.39, respectively.

Table 5 About Here

- 16 -

Sollin's Algorithm

The Sollin algorithm performed best on sparse graphs, hence we studied a paralleli-

zation of the Sollin algorithm for grid graphs. The most time-consuming component of

the Sollin's sequential algorithm may be described by the following procedure:

for all (u,v)EE:

let i and j denote the subtrees containing u and v, respectively;

if i e j then

if c[u,v] < d[i], then d[i] - c[u,v];

if c[u,v] < d[j], then d[j] .- c[u,v];

end if

end for.

That is, all the edge costs must be examined and certain subtree data are updated. Our

parallelization of this scan relies upon a partitioning of the grid into p components (one

for each processor). A three-processor partitioning of a 7 x 7 grid network is illustrated

in Figure 1.

Figure 1 About Here

The above edge scan is performed in two stages. The first stage performs a parallel

scan over edges both of whose vertices lie within the same partition. The second stage

performs a parallel scan over edges across cut sets. If each partition consists of at least

two rows of the grid, then all subtree data updating can be performed independently

without the requirement of a lock.

-17 -

The second part of the Sollin algorithm is to merge two subtrees by appending a new

edge. The merger of subtrees, both of which lie in the same partition can also be exe-

cuted in parallel. A related algorithm may be found in Quinn 1171.

The computational experience with the parallel version of the Sollin algorithm for grid

graphs may be found in Table 6. For these two test problems, the overhead for parallel

processing was only 4%. The speedups for the ten processor runs were 5.89 and 6.81.

Table 6 About Here

- 18 -

V. SUMMARY AND CONCLUSIONS

Five computer codes were developed to solve the minimum spanning tree problem on

a sequential machine. These codes were computationally compared on random graphs

whose densities varied from 0.5% to 100%. An implementation of Prim's algorithm was

best for 100% dense problems and an implementation of the Sollin algorithm was best for

sparse problems. None of the codes were sensitive to the cost range. Kruskal's algorithm

using a modification of a quicksort was the most robust of all implementations, working

very well on a wide variety of problems. Unfortunately, a quicksort is difficult to parallel-

ize. Both the DENSE PRIM code and the SOLLIN code were parallelized by the method

of data partitioning (homogeneous multitasking), yielding ten-processor speedups of 2.79

up to 6.81.

- 19 -

REFERENCES

1. Aho, A.V., J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Massachusetts (1974).

2. AkI, S., "An Adaptive and Cost-Optimal Parallel Algorithm for Minimum Spanning

Trees," Computing, 36 (1986) 271-277.

3. Ali, I., and J. Kennington, "The Asymmetric M-Traveling Salesman Problem: A

Duality Based Branch-And-Bound Algorithm," Discrete Applied Mathematics, 13

(1986) 259-276.

4. Christofides, N., Graph Theory: An Algorithmic Approach, Academic Press, New

York, NY (1975).

5. Deo, N., and Y. Yoo, "Parallel Algorithms for the Minimum Spanning Tree Prob-

lem," Proceedings of the 1981 International Conference on Parallel Processing. IEEE

Computing Society Press, (1981) 188-189.

6. Held, M., and R. Karp, "The Traveling Salesman Problem and Minimum Spanning

Trees," Operations Research, 18 (1970) 1138-1162.

7. Held, M., and R. Karp, "The Traveling Salesman Problem and Minimum Spanning

Trees: Part]I," Mathematical Programming, 1 (1970) 6-25.

8. Knuth, D.E., Sorting and Searching, Addison-Wesley, Reading, Massachusetts

(1973).

9. Kwan, S., and W. Ruzzo, "Adaptive Parallel Algorithms for Finding Minimum Span-

ning Trees," Proceedings of the 1984 International Conference on Parallel Process-

ijn, IEEE Computing Society Press, (1984) 439-443.

10. Lavallee, I., and G. Roucairol, "A Fully Distributed (Minimal) Spanning Tree Algo-

rithm," Information Processing Letters, 23 (1986) 55-62.

11. Lavallee, I., "An Efficient Parallel Algorithm for Computing a Minimum Spanning

Tree," Parallel Computing 83, (1984) 259-262.

12. Nath, D., and S. Maheshwari, "Parallel Algorithms for the Connected Components

and Minimal Spanning Tree Problem," Information Processing Letters, 14, 1 (1982)

7-11.

13. Osterhaug, A., Guide to Parallel Programming on Sequent Computer Systems, Se-

quent Computer Systems, Inc., Beaverton, Oregon (1986).

14. Parallel Computers and Computations, Editors J. van Leevwen and J.K. Lenstra,

Center for Mathematics and Computer Science, Amsterdam, The Netherlands,

(1985).

- 20 -

15. Papadimitriou, C. and K. Steiglitz, Combinatorial Optimizaiton: Aleorithms and
Complexity. Prentice-Hall, Englewood Cliffs, New Jersey (1982).

16. Pawagi, S. and I. Ramakrishnan, "An O(log n) Algorithm for Parallel Update of
Minimum Spanning Trees," Information Processing Letters, 22 (1986) 223-229.

17. Quinn, M.J., Desi2ning Efficient Algorithms for Parallel Computers, McGraw-Hill,
New York, New York (1987).

18. Sedgenwick, R., Algorithms, Addison-Wesley, Reading, Massachusetts (1983).

19. Tarian, R.E., Data Structures and Network Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, Pennsylvania (1983).

- 21 -

Figure 1. A Three Processor Partitioning of a
7 x 7 Grid Graph.

partition I

cut 1 -

partition 2

}partition 3

Table 1. Comparison of Sequential Codes on High Density Random Graphs
Having a Cost Range of 0 to 10,000
(times are total seconds to solve three problems)

Graph SPARSE DENSE HEAP
Vertices Density Edges PRIM PRIM PRIM SOLLIN KRUSKAL

200 100% 19900 1.22 0.91 1.60 3.13 1.22
200 80% 15920 1.11 0.95 1.37 2.37 1.36
200 60% 11940 0.82 0.90 1.08 1.73 0.71
200 40% 7960 0.63 0.90 0.82 1.08 0.66

400 100% 79800 5.27 3.71 5.97 12.50 3.64
400 80% 63840 4.17 3.67 5.02 10.46 2.70
400 60% 47880 3.66 3.81 4.34 8.89 2.90
400 40% 31920 2.85 4.12 3.46 5.16 2.22

600 100% 179700 11.60 8.51 13.20 29.32 9.74
600 80% 143760 9.46 8.44 10.82 23.67 6.85
600 60% 107820 7.69 8.32 8.56 17.57 7.15
600 40% 71880 5.87 8.34 6.15 11.83 4.85

TOTAL TIME (sec) 54.35 52.58 62.39 127.71 44.00

RANK 3 2 4 5 1

Table 2. Comparison of Sequential Codes on High Density Random Graphs
Having a Cost Range of 0 to 100,000
(times are total seconds to solve three problems)

Graph SPARSE DENSE HEAP
Vertices Density Edges PRIM PRIM PRIM SOLLIN KRUSKAL

200 100% 19900 1.19 0.90 1.55 3.04 1.17
200 80% 15920 1.00 0.90 1.31 2.29 0.96
200 60% 11940 0.81 0.90 1.07 1.72 0.73
200 40% 7960 0.62 0.90 0.81 1.07 0.67

400 100% 79800 4.91 3.66 5.88 11.37 4.38
400 80% 63840 4.14 3.67 4.93 10.36 2.70
400 60% 47880 3.36 3.66 3.92 7.89 2.69
400 40% 31920 2.58 3.67 2.87 4.64 1.79

600 100% 179700 11.89 8.66 13.58 29.37 9.57
600 80% 143760 9.54 8.67 11.23 23.71 8.42
600 60% 107820 7.71 8.32 8.62 17.66 6.37
600 40% 71880 5.86 8.34 6.14 11.85 4.37

TOTAL TIiME (sec) 53.61 52.25 61.91 124.97 43.82

RANK 3 2 4 5 1

Table 3. Comparison of Sequential Codes on Low Density Random Graphs
Having a Cost Range of 1 to 10,000
(times are total seconds to solve three problems)

Graph SPARSE DENSE HEAP
Vertices Density Edges PRIM PRIM PRIM SOLLIN KRUSKAL

200 20% 3980 0.45 0.90 0.54 0.54 0.42
200 10% 1990 0.37 0.89 0.41 0.30 0.33
200 5% 995 0.33 0.90 0.34 0.16 0.25

400 20% 15960 1.81 3.66 1.75 2.69 1.32
400 110% 7980 1.43 3.64 1.16 1.39 1.00
400 5% 3990 1.25 3.64 0.90 0.72 0.81

600 20% 35940 4.10 8.32 3.62 6.07 2.47
600 10% 17970 3.22 8.26 2.28 3.09 2.06
600 5% 8985 2.79 8.27 1.61 1.53 1.43

TOTAL TIM-E (sec) 15.75 38.48 12.61 16.49 10.09

RANK 3 5 2 4 1

Table 4. Comparison of Sequential Codes on Sparse Random Graphs
Having a Cost Range of 0 to 10,000
(times are total seconds to solve three problems)

Graph SPARSE DENSE HEAP
Vertices Density Edges PRIM PRIM PRIM SOLLIN KRUSKAL

800 2.0% 6392 4.47 15.03 1.79 1.25 2.03
800 1.0% 3196 4.32 14.78 1.53 0.69 1.47
800 0.5% 1548 4.24 14.30 1.42 0.45 1.04

1000 2.0% 9990 6.97 23.95 2.46 1.91 3.04
1000 1.0% 4995 6.72 23.54 2.05 1.11 2.34
1000 0.5% 2498 6.60 22.79 1.80 0.65 1.51

1200 2.0% 14388 10.02 35.08 3.18 2.87 4.55
1200 1.0% 7194 9.66 34.40 2.65 1.57 3.76
1200 0.5% 3597 9.47 33.45 2.35 0.88 2.37

TOTAL TIME (sec) 62.47 217.32 19.23 11.38 22.11

RANK 4 5 2 1 3

Table 5. Parallel DENSE PRIM on G = [V,E] with IVI = 900 and IEI = 404,000
Having a Cost Range of 0 to 100,000
(all parallel times are the average for five runs)

Problem 1 Problem 2

time time
Cpu's Algorithm (sec) speedup (sec) speedup

1 SPARSE PRIM 8.89 0.46 8.89 0.73

1 DENSE PRIM 6.39 0.63 6.45 1.00

1 HEAP PRIM 9.80 0.41 9.74 0.66

1 SOLLIN 22.22 0.18 26.31 0.25

1 KRUSKAL 4.05 1.00 7.35 0.88

1 PARALLEL 7.77 0.52 7.73 0.83
DENSE PRIM

2 PARALLEL 4.15 0.98 4.14 1.56
DENSE PRIM

3 PARALLEL 2.95 1.37 2.92 2.21
DENSE PRIM

4 PARALLEL 2.37 1.71 2.36 2.73
DENSE PRIM

5 PARALLEL 2.01 2.01 1.99 3.24
DENSE PRIM

6 PARALLEL 1.79 2.26 1.79 3.60
DENSE PRIM

7 PARALLEL 1.64 2.47 1.65 3.91
DENSE PRIM

8 PARALLEL 1.55 2.61 1.56 4.13
DENSE PRIM

9 PARALLEL 1.48 2.74 1.49 4.33
DENSE PRIM

10 PARALLEL 1.45 2.79 1.47 4.39
DENSE PRIM

Table 6. Parallel SOLLIN on 350 x 350 Grid Graphs With IVI = 122,500,
and tEl = 244,300 Having a Cost Range of 0 to 10,000
(all times are the average for five runs)

Problem 1 Problem 2

time time
Cpu's (sec) speedup (sec) speedup

it 34.33 1.00 36.99 1.00

1" 35.64 0,96 38.47 0.96

2 19.59 175 19.62 1.89

3 13.68 2.51 12.61 2.93

4 9.85 3.49 9.83 3.76

5 8.77 3.91 8.62 4.29

6 7.43 4.62 7.27 5.09

7 7.07 4.86 6.90 5.36

8 6.55 5.24 6.64 5.57

9 6.82 5.03 6.26 5.91

10 5.83 5.89 5.43 6.81

t best sequential SOLLIN code

* parallel code run with a single processor

Technical Report 88-OR-13

DJKSTRA'S TWVO-TREE SHORTEST PATH
ALGORITHM

by

R.V. Helgason
J.L. Kennington

B.D. Stewart

Department of Operations Research and Engineering Management
School of Engineering and Applied Science

Southern Methodist Univeristy
Dallas, Texas 75275

Revised January 1989

Comments and criticisms from interested readers are cordially invited.

-29-

ABSTRACT

The objective of this study is to computationally investigate a version of Dijkstra's algo-

rithm for the problem of finding the shortest path between two nodes in a graph. The

classical Dijkstra algorithm builds a shortest path tree rooted at one of the designated

nodes. This method is computationally compared with a version that builds two shortest

path trees rooted at each of the two designated nodes. Termination occurs when any node

appears in both trees. Computationally we found that the classical Dijkstra method built

trees containing approximately 50% of the nodes in the original graph while the two-tree

method terminated with only 6% of the nodes in the two trees. In computational experi-

ments involving over 480 test problems, the two-tree method produced a speedup of over

four.

ACKNOWLEDGEMENT

This research was supported in part by the Department of Defense under Contract Num-
ber MDA 903-86-C0182, the Air Force Office of Scientific Research under Contract
Numbers AFOSR 83-0278 and AFOSR 87-0199, the Office of Naval Research under
Contract Number N00014-87-K-0223, and ROME Air Development Center under Con-
tract Number SCEEE PDP/87-95.

-30-

I. INTRODUCTION

Since the late fifties when the first methods were developed, the shortest path problem

has become one of the fundamental problems in the areas of combinatorial optimization,

computer science, and operations research. Algorithms and applications are commonly

found in the important books in these areas (see for example [BeGa], [BeGh], [H], [JB],

ILI, [PS], [Q], and IT]). The study of this problem has been motivated by both its

elegant mathematical structure and its many practical applications. Our recent interest in

this problem was occasioned by the need to solve shortest path subproblems in several

mathematical optimization procedures we are developing in an MIMD parallel computing

environment.

Consider the network G = [V, E] with node set V and arc set

E C (V x V)\{(i, i) : i E V). Let c(i, j) denote the length of edge (i, j). A Path in G

from s E V to t G V is a sequence of distinct edges

(v1 ,v2), (v2,v3), ... , (vk-1, vk) such that v, = s, Vk = t, and every edge (vj, vj+i) E E. For

brevity, we will also denote the path above simply as s = v1, v2, ... , vk-I, Vk = t. The path
(k- 1)

length is given by Y c(vj, vj+). The (two node) shortest path problem is defined as
j=I

follows: Given two distinct nodes s and t, find a directed path in G from s to t with

minimum length.

Excellent surveys for the many variations of the shortest path problem may be found

in Deo and Pang [DPI and Gallo and Pallottino [GP]. A survey of techniques and

computational comparisons may be found in Dial, Glover, Karney, and Klingman

[DGKKa], and [DGKKb], in Klingman, Mote, and Whitman [KMW], in Glover, Glover,

and Klingman [GGKI, in Desrochers [De], and in Divoky [Di]. In [DGKKaI all the meth-

ods are grouped into two general classes: label-setting algorithms and label-correig

alithms. Dijkstra is credited with the first label-setting algorithm and any algorithm

-31 -

which uses this approach has been considered a particular implementation of Dijkstra's

original algorithm (see [GP]).

The Dijkstra algorithm is restricted to problems having non-negative edge lengths and

it builds a shortest path tree rooted at s. At each iteration at least one new node and

edge are appended to the shortest path tree. Hence, after at most IVi - 1 iterations t is

appended to the tree and the shortest path from s to t is known. It occurred to us that in

an MIMD parallel computing environment shortest path trees could be grown from both s

and t using two independent processors and that when the trees meet we should have a

solution. A simplistic argument led us to believe that on the average we should obtain a

solution in half the time taken by a typical serial implementation. Early experimental

results with a parallel implementation of this strategy applied to both the Dijkstra algo-

rithm for the shortest path problem and the closely-related painted network algorithm for

the painted problem (see [RI) were excellent. This led us to conjecture that a serial

algorithm which mimics the action of the two parallel processors should be superior to the

usual serial implementation. We subsequently developed such a serial implementation,

and our conjecture was born out. A search of the literature revealed that a serial algo-

rithm of this type, which we call a two-tree Dijkstra algorithm, had been anticipated.

In 1960 Dantzig [Da] suggested that a pair of trees be built with one rooted at s and

the other rooted at t. No stopping criteria were given. This strategy also appears in the

1962 book by Berge and Ghouila-Houri [BeGh] with an incorrect stopping criterion.

Nicholson [N] was the first to present a correct analysis of the Dijkstra two-tree algo-

rithm. Additional discussion may be found in the 1969 survey by Dreyfus [Dr]. Unfor-

runately, the literature contains no computational studies and the excellent speedup possi-

ble with the two-tree Dijkstra algorithm has apparently not been previously observed.

The explanation for the excellent behavior of the two-tree Dijkstra algorithm lies in

the small size of each rooted tree when the stopping criterion is satisfied. In our compu-

- 32 -

tational study, we found that the original Dijkstra algorithm generated a shortest path tree

containing approximately 50% of the original nodes. However, both trees together in the

two-tree method contain only 6% of the original nodes. This is an astonishing observa-

tion which can be used to improve numerous algorithms which depend upon the repeated

solution of shortest path problems. It is the purpose of this paper to communicate our

experimental results which indicate that the two-way Dijkstra should be used in prefer-

ence to the ordinary Dijkstra algorithm, especially within algorithms which depend upon

the repeated solution of shortest path problems. In addition, we present the algorithms in

detail and a convergence proof with an appropriate stopping criterion. Our experience

points up the lesson that examination of algorithms for the parallel computing environ-

ment may well lead to better design of algorithms for the serial environment.

- 33 -

II. THE CLASSICAL ALGORITHM

Dijkstra's classical algorithm begins at node s and builds a shortest path tree in which

the shortest path from s to any node in the tree is known. When node t is placed in the

tree we have a minimum length directed path from s to t. The algorithm may be stated as

follows:

DIJKSTRA'S SHORTEST PATH ALGORITHM

Input:

1. A graph G = IV, E] with node set V and edge set E.

2. A length c(i, j), for each edge (i, j)e E .

3. Two nodes s and t, between which a shortest path is desired.

Working Entities:

1. A set 0 of nodes which are to be scanned.

2. A set R of nodes whose labels are not permanent.

3. A set of labels {do)} for node distance from s.

4. A set of labels {p(j)} for node predecessor in tree.

5. A minimum distance value u for nodes whose labels are not

permanent.

Output:

1. A shortest path in G from s to t implicit in labels {p(j)). Explicitly, the path is

S = pw(t), p.-I(t) p2(t), P(t), t,

where pi(t) is defined recursively by pi(t) = p(t) and pi(t) - p(pi-(t)) for i > 2.

2. The length u of a shortest path in G from s to t.

Assumptions:

All c(i, j) > 0, s t, and there exists a directed path in G from s to t.

- 34 -

procedure DIJKSTRAI:

begin

1 R -V, for all ke R,d(k)-- oc; d(s),-0, p(s) -- s;

2 u- min{d(k) : k G R},Q ,- {k E R: d(k) =u), select i E Q,R- R\{i);

3 for all (i,j) E ({i} X R)flE,

4 if do)> u+c(i,j), then

5 d(j) - u + c(i, j), p(j) - i;

6 end if

7 end for

8 ifi d t, thengoto2;

end.

We define D(j) to be the length of a shortest path in G from node s to node j. We will

say that an iteration has occurred each time that Steps 2 through 7 have been completed

and at the end of an iteration the node i will be said to be permanently labeled and

scanned. Proof for the following two propositions may be found in Even [E].

Proposition 1. During the execution of DIJKSTRA1, if d(j)<oo , then there is a path in G

from s to j of length do).

Proposition 2. If j E Q in Step 2 of DIJKSTRA1, then d(j) D(j).

The following four results are readily obtained from the pre';ious propositions.

Proposition 3. During the execution of DIJKSTRA1, d(j) > D(j).

Proposition 4. During the execution of DIJKSTRA1, if j R, d(j) = DO).

Proposition 5. During the execution of DIJKSTRA1, if j E R, do) Z D(q) for all q 4 R.

Proposition 6. During the execution of DIJKSTRAI, if j I R and j 4 s, then p)Z R.

- 35 -

Proposition 7. If (q, r)e5 E, D(q) <- D(r) + c(q, r).

Proof. Let S = V, V,.., Vk =r is any shortest path in G from s to r.

Case 1. Assume (q, r) (Vk-1, Vk). Then edge (q,r) extends the path to a path in G

from s to q of length D(r) + c(q,r). Hence D(q) -< D(r) +c(q,r).

C . Assume (q, r) = (Vk-1, Vk). Then D(r)=D(q)+c(q,r).

Hence, D(q)=D(r)-c(qr)< D(r)+c(q,r), since c(q,r)> 0. 0

Proposition 8. After the first execution of Step 2 in DIJKSTRA1, if i E R, there exists a

shortest path S = v1, V2, .- Vk =i in G from s to i for which an integer j satisfying

1 < j 5 k exists such that (vi, vj-1} R= 0and {vj, . . . ,vk} C R.

Proof. After Step 1, R=V, d(s)=Q, and d(r) = o for all r E V where r d s. Thus the

first time through Step 2 produces u=0, Q={s), and R=V\{s), so that s 4 R from then on.

Let S=YY2, • • • ,Yq = i be any shortest path in G from s to i. Let r be the smallest

integer such that y, E R. Then {Y,+, yq} C R. If r = 1, Y1, Y2, . . yq is the

path we seek and j=2. Otherwise, reversing the path given by

yr, P(Yr), ..., Pw-i(Yr), p,.(yr) = s

and adjoining it to Yrl, ,yq produces the path we seek, with j = r + 1. By Prop. 6,

all nodes in the reversed path are not in R. 0

That an arbitrary shortest path in G from s to i may not exhibit the property of Prop. 8 is

shown in Figure 1.

- 36 -

I. DIJKSTRA'S TO-TREE ALGORITHM

The two-tree algorithm builds a pair of shortest path trees which we call the left tree

and the right tree. The left tree contains s while the right tree contains t. The two trees

are grown in alternate steps and termination occurs when a node appears in both trees.

For the problem illustrated in Figure 2, termination occurred at iteration 4 when node 3

appeared in both trees. However, one should note that node 3 is not contained in the

shortest path. To determine the shortest path, we add the left and right labels and select

a node with smallest sum. For this example, the sum of the labels are as follows: (node

1, o), (node 2, 5), (node 3, 6), (node 4, 5), (node 5,w). Therefore, the shortest path

has length 5 and is given by (1, 2), (2, 4), (4, 5). The two-tree Dijkstra algorithm may be

stated as follows:

DIJKSTRA'S TWO-TREE SHORTEST PATH ALGORITHM

Input:

1. A graph G = [V, El with node set V and edge set E.

2. A length c(i, j) for each edge (i, j)G E .

3. Two nodes s and t, between which a shortest path is desired.

Working Entities:

1. Sets Q' and Q' of nodes which are to be scanned with respect

to the trees rooted at nodes s and t, respectively.

2. Sets Rand Rt of nodes whose labels are not permanent with respect

to the trees rooted at nodes s and t, respectively.

3. Sets of labels {d(j)) and {d'()) for node distances from nodes s

and t, respectively.

- 37 -

4. Sets of labels {p5(j)} and {p'(j)} for node predecessors in trees

rooted at nodes s and t, respectively.

5. Minimum distance values us and u' for nodes whose labels are not permanent

in the trees rooted at nodes s and t, respectively.

Output:

1. The length u of a shortest path in G from s to t.

2. A set of J nodes each lying on a shortest path in G from s to t.

3. A shortest path in G from s to t implicit in J and the predecesor labels {pj}.

Explicitly, the path is

s = ps(r), ps_(r), ... , p5(r), r, pt (r), . . . , p'-(r), p'(r) = t,

where pQ(') and pj(') are defined analogously to pi(') of Section I.

Assumptions:

All c(i, j) ;> 0, s d t, and there exists a directed path in G from s to t.

procedure DIJKSTRA2:

begin

i s Rs -V, for all kG R',d s(k)- oo; dS(s) -0, pS(s)- s;

i R *- V, for all k G R , d(k) - oo; dr(t) -0, pt(t) - t;

2 s us - m in {d(k) : k E Rs), QS - {kE R : ds(k) = us) , select i E QS, Rs' R s\ {i) ;

3s for all (i,j) E ({i} xR s)nE,

4s if dS(j) > u s + c(i, j), then

5s dS6) - us + c(i, j), pSj) - i;

6s end if

7s end for

8s if i E RI, then go to 9;

2' U' -- min {d'(k) : k E R}, Q' - {k E R' : d'(k) = u'}, select j E Q', R' -- R\{j};

- 38 -

31 for all (i,j) E (R'x {j})nE,

41 if d'(i) > u' + c(i, j), then

5' d'(i) - u' + c(i, j), p'(i) - j;

6 t end if

7t end for

8' if j 1 R, then go to 2;

9 u - min {d'(j) + d'(j) : j E (V\R) U (V\R')}

10 J - {j E (V\Rs) U (V'R') : d(j) + d') = u);

end

Note that with minor notational adjustments, Propositions 1 through 8 also apply to the

tree-building steps 1S through 8 S for the tree rooted at s as well as 1' through 8' for the

tree rooted at t, with the roles of s and t reversed.

Proposition 9. (Nicholson [NJ) When DIJKSTRA2 terminates, the length of the shortest

path in G from s to t is given by

u = min {d5() + d'(j) : j E (V\R s) U (V\R')). (1)

Proof. Let n E (V\Rs) f(V'R') and let r be any node of (V\R) U (V'R) such that

dS(r) + d'(r) = u. Let i be an arbitrary node of V. We will show that

u _< Ds(i)+ D'(i) (2)

Case 1. Assume i E (V'Rs) and i G (V'R'). By Prop. 4, D'(i) = ds(i) and D(i) =d'(i),

so that D5 (i) + Dt(i) = ds(i) + d'(i). Also, i E (VRS) U (V\R), so that u _< d5 (i) + d'(i).

Thus (2) holds.

Case 2. Assume i 0 (VR) and i 4 (V\R!). Then i E Rs and i E R'. Since

n i R' and n 4 R', by Prop. 5, Ds(i) > d5(n) and D(i) > d'(n), so that

- 39 -

Ds(i) + D'(i) > ds(n) + dr(n). Since n e (V\RS) U (V\R'), ds(n) + d'(n) __ u. Thus (2)

holds.

Case 3. Assume i 0- (V\Rs) and i E- (V\R'). By Prop. 8 there exists a shortest path

s = vI, v2, .-. , Vk i in G from s to i for which an integer w satisfying 1 < w __ k exists

such that {vj, ... , v},l-n R =0 and {vw, . . . ,vjj C Rs. For any j such that

1 _< j < k, we must have that

D'(vj+) - DS(vj) = c(vj, vj+1). (3)

Also, for any j such that 1 _< j < k, we have from Prop. 6 that

D'(vj+,) - Dt(vj) >_ - c(vj, vjp). (4)

Let p be any integer such that 1 _ p < k - 1. Summing both (3) and (4) with j taking on

all integral values from p to w-1, we obtain

(k- I)

Ds(Vk) - DS(vp) = I c(vj, vj+ 1) (5)
j= p

and

(k -I)

DI(vk)-D'(vp) > I c(v,vj+1). (6)
j=p

Adding (5) and (6) and using Vk = i, we obtain for all p such that 1 :5 p _ k-1,

DS(i) + D'(i) a Ds(vp) + D'(vp). (7)

Subcase 3.1 Assume there is an integer h such that 1 __ h :s w - 1 and Vh 0 R'. We

also have that Vh 4 R, so that by Prop. 4, d'(Vh) = D'(Vh) and ds(Vh) = DI(vh). By (7),

DS(i) + Dt (i) >- DS(vh) + D'(vh) = ds(vh) + dt (vh). Since Vh E (V\Rs) U (V\Rt),

ds(Vh) + d t(Vh) > u. Thus (2) holds.

S Assume there is an integer I such that w _5 1 _< k and v1 E R'. Since

I > w, v, E RS. By Case 2, u :s DS(vi) + D'(vj). From (7),

DS(i) + DI(i) 2_ DS(v,) + D'(v), so that (2) holds.

- 40 -

Subcase 3.3 Assume that {v, ... ,Vw_} C R and {vw, .. , vk) R'= 0. Since

vW- (4 R' and (vw- 1 , vw,) E (QS x R') n E on the iteration vw-Iwas scanned,

ds(vw) -< DS(vw-,) + c(vw-,, v,). (8)

From (3),

DS(vw) = Ds(vw- 1) + c(vW- 1 , v,). (9)

From (8) and (9), dS(vw) <_ D(vw) and from Prop. 3, dS(vw) Ds(vw) , so that

DS(vw) = ds(vw). (10)

Since vw 0 R', from Prop. 4,

D'(vw) = d'(v.). (11)

Adding (10) and (11), we have that

D5(vw) + D'(vw) = dS(vw) + d1(vw). (12)

Since vw E V\R', v, E (V\Rs) U (V\R!), so that

u -5 dS(vw) + d'(vw). (13)

From (7),

Ds(i) + Dr(i) > D'(vw) + D'(vw). (14)

From (12), (13), and (14), we have that (2) holds.

Case 4. Assume i E (V\R) and i (4 (V\R'). An argument similar to that of Case 3

shows that (2) holds. 0

- 41 -

IV. COMPUTATIONAL EXPERIENCE

Both algorithms have been coded and run on dense mxn bipartite graphs having 2mn

edges. The data structure used is identical to that used by Jonker and Volgenant [JV] in

their highly successful assignment code. Both codes are written in FORTRAN and were

run on a Sequent Symmetry S81 using a single Intel 80386 cpu. The computational

experience is presented in Table 1.

Each data point in Table 1 is the sum for twenty problems, i.e. 240 problems were

solved with three different codes. For each set of 20 problems, the cost structure was the

same, and s was selected at random from among the left side nodes and t was selected at

random from among the right side nodes.

The Dijkstra Left Side Only builds the left tree while the Dijkstra Right Side Only

builds the right tree. The column entitled iter gives the number of nodes placed in the

shortest path trees for all twenty problems. For the 1000 x 1000 problems with 2,000,000

edges, the Dijkstra Left Side Only algorithm builds a shortest path tree with 1057 nodes

on the average. For this set of eighty problems, the Dijkstra two-tree algorithm builds

shortest path trees with a total of 110 nodes on the average. This is an extraordinary

reduction in the amount of computational work required to solve these eighty problems.

However, there is overhead involved in the two-tree algorithm which accounts for a

speedup of four while the reduction in the number of nodes placed in the shortest path

trees is a factor of eight. The Dijkstra two-tree algorithm also takes almost double the

storage of the classical Dijkstra method. The comparison of storage is given in Table 2.

Similar codes were developed and run on twelve of the (nonbipartite) NETGEN [KNS]

problems. The computational experience is presented in Table 3. Each data point is the

sum for twenty problems. From each NETGEN problem, twenty problems were gener-

ated by randomly selecting s to be a source and t to be a sink. Given randomly selected s

and t nodes, the NETGEN problems may not contain a directed path from s to t. There-

- 42 -

fore, step 3 for the algorithms has been modified to terminate with no feasible solution

when u, us, or u' equal o. As with the bipartite structure only about 10% as many

nodes need be scanned with the 2-tree algorithm as with the single tree algorithm.

- 43 -

V. SUMMARY AND CONCLUSIONS

Dijkstra's classical algorithm has proven to be extremely successful for the problem of

finding the shortest path in a graph connecting two given nodes. A minor modification of

this algorithm suggested by Nicholson [NJ converts a good algorithm into an extraodinary

medrod. While the classical algorithm required a scan over approximately 50% of the

problem nodes, the two-tree algorithm only required a scan over 6% of the problem

nodes. On 80 problems containing 2000 nodes and 2,000,000 edges, the new algorithm

obtains the shortest path in approximately 1.7 seconds/problem compared to 7.5 seconds

for the best classical algorithm.

- 44 -

REFERENCES

[BeGh] C. Berge and A. Ghouila-Houri, Programming. Games. and Transportation
Networks, John Wiley and Sons, Inc., New York, NY (1962).

[BeGa] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, Englewood Cliffs,
New Jersey (1987).

[B] J. Boothroyd, "Algorithm 22: Shortest Path Between Start Node and End Node
of a Network", The Computer Journal, 10 (1967) 306-307.

L-- G. Dan+--;, "On the Shortest Route Through a Network," Management Science,
6, (1966) 187-190.

[DP] N. Deo and C. Pang, "Shortest-Path Algorithms: Taxonomy and Annotation,"
Networks, 14, (1984) 275-323.

[De] M. Desrochers, "A Note on the Partitioning Shortest Path Algorithm," 012e.-
tions Research Letters, 6, (1987) 183-187.

[DGKKa] R. Dial, F. Glover, D. Karney, and D. Klingman, "A Computational Analysis
of Alternative Algorithms and Labeling Techniques for Finding Shortest Path
Trees," CCS Report 291, Center for Cybernetic Studies, The University of
Texas, Austin, TX 78712 (1977).

[DGKKb] R. Dial, F. Glover, D. Karney, and D. Klingman, "A Computational Analysis of
Alternative Algorithms and Labeling Techniques for Finding Shortest Path
Trees," Networks, 9 (1979) 215-250.

[Di] J. Divoky, "Improvements for the Thresh X2 Shortest Path Algorithm,"
Operations Research Letters, 6, (1987) 227-232.

[Dr] S. Dreyfus, "An Appraisal of ,Some Shortest-Path Algorithms," Operations
Research, 17, (1969) 395-412. ^

[E] S. Even, Graphs Algorithms, Computer Science Press, Potomic, Maryland
(1979).

[GGK] F. Glover, R. Glover, and D. Klingman, "Computational Study of an Improved
Shortest Path Algorithm," Networks, 14, (1984) 25-36.

[GP] G. Gallo and S. Pallottino, "Shortest Path Methods: A Unifying Approach,"
Mathematical Programming Study, 26, (1986) 38-64.

[HI T. Hu, Combinatorial Algorithms, Addison-Wesley, Reading, MA (1982).

[JB] P. Jensen and J. Barnes, Network Flow Programming, John Wiley and Sons,
Inc., New York, NY (1980).

- 45 -

[JV] R. Jonker and A. Volgenant, "A Shortest Augmenting Path Algorithm for
Dense and Sparse Linear Assignment Problems," Computing, 38, (1987)
325-340.

[KMW] D. Klingman, J. Mote, and D. Whitman, "Improving Flow Management and
Control Via Improving Shortest Path Analysis," CCS Report 322, Center for
Cybernetic Studies, The University of Texas, Austin, TX 78712, (1978).

[KNSI D. Klingman, A. Napier, and J. Stutz, "NETGEN: A Program for Generating
Large Scale Capacitated Assignment, Transportation, and Minimal Cost Flow
Network Problems," Management Science., 20, (1974) 814-821.

[L] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart, and Winston, New York, NY (1976).

[N] T Nicl-olson, "Finding the Shortest Route Between Two Points in a Network,"
The Computer Journal, 9, (1966) 275-280.

[PS] C. Papadimitriou and K. Steiglits, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, Englewood Cliffs, NJ (1987).

[Q M. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw-
Hill, New York, NY (1987).

[R] R. Rockafellar, Network Flows and Monotropic Optimization, John Wiley and
Sons, Inc., New York, NY (1984).

[T] R. Tarjan, Data Structures and Network Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA (1983).

- 46 -

S(0)(0
(edge length)

S t

Iter. 1 Tree

[, 1] [?, 00] [U, 00]

R ={2, 3, 4, 5, 61 2

100
[1,0 O] 1,1 1] ?, 00 1/

[p(i), d(i)l

[1,1] [2,1] [5, 1]

Iter. 3 i 5 2 5

R = {3, 4, 6}

[1, 0] [1, 1] [5, 2]

Shortest Path s=1, 2, 3, 4, 5, 6=thasl, 2 R, 3,4 E R, 5 0R, and 6 E R.

Figure 1. Shortest Path Without Prop. 8 Property

3 (edge length)

S t

Left Tree Right Tree

Iter. 1 [? cI r. [, 00]

0 0

[1,0] [1, 1] [?,] [?, Oc] [7, cc] [?, w] [5, 1] [5,0]

[pS(i), dS(i)]
[pt(i), dt(i)]

IeIter. 4

[2, 3] [4, 3]

0 0
[110] 1,1 [2,4] [?, 0 [?,] [4,4] [5,1] [0]

1 2 000

Figure 2. Example of Two-Tree Dijkstra
(Shortest Path From 1 to 5 has Length 5)

C) N r 'DC nC
V- - \ N m r n N N t N C

a) .

~C\N C\xml-\
Na N r- w 0 r-0 C \~' 0\

.- tt r 1) m~-N N rl~- -4 C N C> N.

m. w m) C) 0 0 m N >N N
C\ C> t- 0It- ON' r-Cf) C> 0
\, r- - NN " C>-4 i -

cz \0 C> -4 00 c C 0000 0 > N cp

to 0 0 > C>-rO 0 C> 0>

0 0 C) C) 0 0C C C>0 e 0 0 C C

000 0 00 00 0 0 0 0
4)) C> C 00 00 000 00C00 C

0A 1- "0 0 T-00'- 0

C) C 4Q '-0 C'0C-40> > >C

64 0 00C0 0000C >C> 000
: 00 0 00 C 000)0 0000 C

0, v- r-- v-4 "- -4 r-4 "-f r-

Table 2. Comparison of Storage for Classical

and Two-Tree Dijkstra Codes

Classical Two-Tree
Dijkstra Dijkstra

m x n length arrays 1 1

rn-length arrays 3 8

n-length arrays 3 8

'~ 6 o 6 r-1 1r; cl 6 0Cr-

w4 -- 4 r-4 1-4 r- --- 4 CIA ~ -
z -

C) . cq tn I~ V~~C ~ - e N 00 r--

C) - Cl\ Cl C\ C.0 N> ON m' 0N ON Cl
- n 1- -4 ,-4 004 t-. r-. r- 0 -4 Cl

Z Cl

'. \ --I W) '- \ 00 C> r- m '.00

ClE C q l -4 ') V- 1, l- 00 '1- N ' C

r- Cl cq 0 \ .) -40

0~ '- \ %n C14 00 - N 0- It N0 Cl NN
C\0 N ll O l \06 Oz0\S N0 c,~' 'N ~. '4 I't Cl\

00

>.' N> ON C4 cl t- C> '.0 0> N C>) '.
'- .0 C~ 6o I 00 -C) C) C'

OE eqt Rd, 0l en) en r- CN 00 C>- 0 C.C

m-4 N -4C

C> N C> Cl 00 ON C) C C>-4 C C
'.0 'r> 00> C Cl C)- C> C'- C C> ON C> .

_ 0- C' ON CD l C'~ r C> C 'C> '. C
ONE'- C r ~ 00 Cl m' kN m.O

*= 0

C\ ' C' N1 en 4t kn \' t- 00 C\ C'

Zq m- Cl en) -m mClf m m I

Technical Report 88-OR-16

AN EMPIRICAL ANALYSIS OF THE DENSE

ASSIGNMENT PROBLEM

by

J. Kennington
Z. Wang

Department of Computer Science & Engineering

School of Engineering and Applied Science
Southern Methodist University

Dallas, Texas 75275

revised April 1989

Comments and criticisms from interested readers are cordially invited.

-52-

ABSTRACT

The best algorithms for the dense assignment problem are acknowledged to be the auction

algorithm and the shortest augmenting path algorithm. In this investigation we present an

empirical analysis of the best software implementations of these two methods on three

different serial machines. These software implementations were developed by Professor
Bertsekas of Massachusetts Institute of Technology and by Professors Jonker and Vol-

genant of the University of Amsterdam. This was an independent evaluation of the soft-

ware implementation of these two algorithms. For the sample of problems examined and

the sample of hardware used (IBM 3081D, Sequent Symmetry S81, and VAX 750), we

found that the shortest augmenting path algorithm was the best. We also report our

empirical results with a parallel version of the shortest augmenting path algorithm. On

1200x1200 dense assignment problems, speedups of approximately four were achieved

using ten processors. Million arc problems were routinely solved in less than fifteen

seconds on a Sequent Symmetry S81 with the parallel shortest augmenting path algo-
rithm.

ACKNOWLEDGMENT

The authors wish to express their appreciation to Dimitri P. Bertsekas and Paul Tseng of

Massachusetts Institute of Technology for providing invaluable assistance during this

study and to Roy Jonker and Ton Volgenant of the University of Amsterdam for sharing

their software with us. This research was supported in part by the Department of Defense

under Contract Number MDA 903-86-CO182, the Air Force Office of Scientific Research

under Contract Number AFOSR 87-0199, the Office of Naval Research under Contract

Number N00014-87-K-0223, and ROME Air Development Center under Contract Num-

ber SCEEE PDP/87-95. This manuscript has benefited from a careful reading by Richard
V. Helgason of Southern Methodist University.

-53-

I. INTRODUCTION

The classical assignment problem (also known as the weighted bipartite matching

problem) is to assign n men to n distinct jobs so that the total cost of assignment is

minimized. Mathematically, this may be formulated as the following special mathemati-

cal program:

minimize I Cij Xij
i ,j

subject to: xij 1, (all j)

xij = 1, (all i)

x E {0, 1}, (all i,j)

where cij denotes the cost for assigning man i to job j and xij = 1 implies that man i is

assigned to job j. Due to the total unimodularity of the constraint matrix, this problem

can be solved by the simplex algorithm and every basic solution will have xj E {0, 11 (see

Kennington and Helgason [1980]). Hence, classic linear programming duality theory and

Kuhn-Tucker optimality conditions can be used in algorithm development for this prob-

lem.

Specialized algorithms for the assignment problem can be classified into five catego-

ries as follows:

(i) maximum flow (primal-dual),

(ii) primal simplex,

(iii) dual simplex,

(iv) auction algorithm, and

(v) shortest augmenting paths.

The first maximum flow algorithm was developed by Kuhn [1955] and is called the iun-

garJan method. Its name comes from the fact that the algorithm is developed from results

of two Hungarian mathematicians. Variations were presented by Kuhn [1956]. Derigs

- 54 -

[19851 shows that the shortest augmenting path method can be viewed as a more eco-

nomical implementation of the Hungarian method. Ahuja, Magnanti, and Orlin [1988]

call the Hungarian method a primal-dual variant of the successive augmenting path algo-

rithm.

A specialized primal simplex algorithm for the assignment problem was developed by

Barr, Glover and Klingman [1977]. Their method, called the alternating b algorithm,

only considers a subset of the possible bases. This idea was further exploited by Hung

[1983] in his development of a polynomial simplex algorithm for this problem. An exten-

sive compuational study comparing the Hungarian algorithm with primal simplex meth-

ods was performed by McGinnis [1983].

A dual polynomial simplex method known as the signature method has been devel-

oped by Balinski [1985, 1986]. Extensions for the sparse assignment problem were devel-

oped by Goldfarb [1985], and the relationship between the signature method and the

shortest augmenting path method was presented by Derigs [1985]. Another variation of

this algorithm has been developed by Akgul [1988].

Bertsekas [1979, 1981, 1987] and Bertsekas and Eckstein [1988] give a complete theo-

retical development of the auction algorithm. This algorithm critically depends on the

ideas of E-complementary slackness and adaptive scaling. The latest version of

Bertsekas' auction code was completed in June 1988 and has been placed in the public

domain. Barr and Christiansen [1989] have experimented with a parallel version of this

algorithm written in C++ on the Sequent Symmetry S81, and Phillips and Zenios [1988]

have experimented with this algorithm on the Connection Machine. Perry [1988] experi-

mented with a parallel version of the auction algorithm on both the Alliant FX-8 and the

Sequent Symmetry S81.

- 55 -

Hung and Rom [1980] presented a shortest augmenting path method which had both a

polynomial bound and good computational results. Other variants of the shortest aug-

menting path method have been presented by Glover, Glover and Klingman [1986] and

Jonker and Volgenant [1987]. An extensive computational study with the shortest aug-

menting path method may be found in Derigs [1985].

Recently, scaling based algorithms have been presented for the assignment problem

(see Gabow [1985] and Orlin and Ahuja [1988]). These algorithms are derivatives of the

Hungarian method and the auction algorithm, respectively, with the added feature of data

scaling. Bertsekas is using a similar idea in his latest auction code.

There are three ways to analyze the performance of an algorithm: worst-case analy-

sis, average case analysis, and empirical analysis. The worst-case analysis results for the

assignment problem are presented in the excellent report by Ahuja, Magnanti, and Orlin

[19881. The objective of our study is to present an empirical analysis of the two top

performing serial codes. These codes were obtained directly from the authors, and they

represent the current best software implementation of the top competing algorithms.

They were run on three different machines (IBM 3081D, Sequent Symmetry S81, and

VAX 750) to allow for an analysis with respect to differences in machine architecture and

compiler. The best code was then parallelized and the speedup achieved on a shared

memory multiprocessor was reported.

II. SEQUENTIAL CODES

Five algorithms for solving dense assignment problems have been implemented and

computationally compared by various researchers. We are not aware of any computa-

tional studies involving the dual algorithms. Derigs [1985] shows that a shortest augment-

ing path implementation is superior to a Hungarian implementation. This has been con-

- 56 -

firmed by Jonker and Volgenant [1987] and by the authors in a comparison with the

codes of Jonker and Volgenant [1987] and Rardin [1986]. Glover, Glover and Klingman

[1977] found that their shortest augmenting path code was superior to the specialized

simplex code of Barr, Glover and Klingman [19771. The authors have confirmed this with

a comparison of the Jonker and Volgenant [1987] and Barr, Glover and Klingman [1977]

codes. Jonker and Volgenant [1987] also concluded that their dense shortest augmenting

path code was superior to the auction code of Bertsekas [1981].

After many studies over a fifteen year period, it is acknowledged that the two best

algorithms for dense assignment problems are the auction algorithm and the shortest

augmenting path algorithm. We believe that the best software implementation of the

auction algorithm is the code of Professor Bertsekas (Version 1.0, June 1988). Most of

the other auction codes that we have seen are very sensitive to the cost structure and

degrade as the cost range becomes larger. These other codes sometimes work very well

for small cost ranges and fail miserably for cost ranges as small as [0,1000]. By the use

of adaptive scaling, Professor Bertseklas' code works well for both a small cost range and

a large cost range. This code scales all cost data by n+1 and solves a sequence of prob-

lems with decreasing values of the stopping criterion. All calculations are performed in

integer arithmetic. We believe that the best implementation of the shortest augmenting

path algorithm was developed by Jonker and Volgenant [1987]. Dijkstra's algorithm is

used to obtain the shortest augmenting paths a), only integer arithmetic is required. The

code also incorporates an elaborate pre-processing stage which greatly reduces the total

number of times that the Dijkstra algorithm is required. It also uses a clever data struc-

ture for updating the dual variables after a shortest augmenting path has been found. The

code maintains dual variables and the reduced costs are calculated as required. Both

codes are written in standard FORTRAN.

- 57 -

The empirical results of our experiment are presented in Table 1. For all test prob-

lems, all cost ranges, and all machines, the shortest augmenting path code dominated the

auction code. The auction code had the greatest difficulty when the cost range was the

smallest, i.e. [0,100]. When the cost range was at least [0,1000), the auction algorithm

was affected very little by the cost range. The shortest augmenting path code was ad-

versely affected by an increasing cost range. The machine type definitely affected the

empirical analysis. On the Sequent, the shortest augmenting path code was 4.41 times

faster than the auction code, on the IBM it was 3.87 times faster, while on the VAX it was

2.79 times faster. This confirms our belief that the comparative performance of two

codes is intimately linked to the hardware, operating system, and compilers used. For our

tests the BM was running CMS and both the Sequent and the VAX were running

UNIX' t. Our results contradict the widely held belief that the auction algorithm con-

verges faster for lower cost ranges. Professor Bertsekas' latest version of the auction code

for dense problems was not sensitive to changing the cost range from [0,1000] to [0,100

000]. In fact the shortest augmenting path code is much more sensitive to the larger cost

ranges than the auction code is. We also observed the well-known phenomena of the

auction algorithm that a significant amount of the computational time is spent attempting

to complete the last few assignments. This is in contrast to the shortest augmenting path

algorithm that achieves one more assignment with each application of Dijkstra's algo-

rithm. Each application of the shortest path algorithm can be very expensive, but it is

guaranteed to result in one more assignment. This feature along with the extensive pre-

processing to obtain a good set of partial assignments makes this approach work ex-

tremely well.

t UNIX is a trade mark of AT&T Bell Laboratories.

-58 -

III. A PARALLEL SHORTEST AUGMENTING PATH CODE

The algorithm of Jonker and Volgenant [1987] may be divided into three procedures

as follows:

(i) column reduction,

(ii) augmenting row reduction, and

(iii) augmentation using a shortest path procedure.

The first two procedures require the fundamental operation of obtain-

ing min{d[i] : i E K} for a given vector d['] and a given index set K. This operation is

required twice during the column reduction and once during the row reduction. These

three "minimum of a vector" operations have been parallelized by using prescheduled

data partitioning. For a p processor run, K is partitioned into p subsets K1, ... , Kp having

K = U Kj and Ki fl Kk = D for all j, k. Processor j calculates min {d[i] : i E Kj),
j=1 . p

and the global minimum is set to the smallest of the local minima. In the shortest path

procedure using Dijkstra's algorithm, scanning a node requires comparing the current

distance label with the distance label at the node being scanned plus the length of a given

arc. The distance label is either updated with the new shortest path or remains un-

changed. All of this work is independent and can also be distributed among p processors.

The Jonker-Volgenant algorithm is presented below:

THE SHORTEST AUGMENTING PATH ALGORITHM

Input:

1. The problem size, n.

2. The nxn cost matrix, c(i, j).

Output:

1. x[i] = j implies that man i is assigned to job j.

2. y[j] = i implies that job j is assigned to man i.

- 59 -

3. v[j] denotes the dual variable associated with job j.

procedure COLUMN REDUCTION

begin

1. x[i] 0-- , i = 1, ... , n;

2. for j - 1, ..., n

3. uz m--rin Jc[i, j] : i -- 1, ... , n);

4. v[j] *- u and let i*E (i: c[i, j] = u 1;

5. if x[i] -- 0, then x[i] -- j, y[j] i*;

6. end for

7. for i = 1, ... , n

8. if x[i] 0 0, then

9. q m-rain {c[i, j] - v[j]:j=1 ... ,nandj x[i]);

10. v[x[i]] - v[xlii] -,u;

11. end if

12. end for

end

procedure AUGMENTING ROW REDUCTION

begin

13. 1 - 0, t- 0;

14. for i=1, ... , n

- 60 -

15. if x[i] = 0, then I *- 1+1, f[l] - i;

16. end for

17. if I = 0, then terminate with an optimum;

18. m*- 1, k - 1,1 -- 0;

19. i - fl[k], k - k+1;

20. u, - min{c[i, j] - v[j]: j=1, ... , n), let ji EU: c[i, j] - v[j] = ul),

u2 "min{cfi, j1- v[j]: j=1, ..., n and j d j, }, let j2 E j: C[i, j) - v[i =U2

and j ;4 j,};

21. ii -- y[j, 1;

22. if UI < U2 , then v[il'-- v[ilI + UI - U2 ;

23. else ifi =0, then go to 26, else j)-- j2, il -yf j;

24. if il = 0, then go to 26;

25. if uI < u2 , then k -k-1, f[k] ,- ii; else 1 - 1+1, f[l]-- ij;

26. x[i] - i, y[j I- i;

27. if k m go to 19;

28. t 4- t+1;

29. if 1 > 0 and t <2, then go to 18, else continue with procedure BUILD A TREE

end

- 61 -

procedure BUILD A TREE

begin

30. m -1

31. for l= 1 ... , m

32. i* - fill;

33. READY - 4, TODO {,..., n}, RSINK- {j:yj] 0=};

34. d[j] -- c[i*, j] - v[j], pred[j] -i* , j=1, ... , n;

35. p - min{d[j]: jE TODO}, SCAN -- {j: d[j] = ,u jE TODO), TODO

TODO\SCAN;

36. if SCAN fl RSNK * (, then go to 45;

37. for all j, G SCAN

38. i "-- y[j,], h ,-- c[i, j,]-v[ji I - p;

39. for all jE TODO

40. p *- c[i, j] - v[j] - h;

41. if p < d[j], then d[j] - p, predj] -i;

42. end for

43. end for

44. go to 35

45. v[j] *-- v[j] + d[j] - A, for all jC READY;

- 62 -

46. let jE SCAN n RSINK

47. i - pred[j], y[j] - i, k - j, j -x[i], x[i] - k;

48. if i ;4 i* go to 47;

49. end for

end

Steps 3, 9, 20 and 39 are the most computationally expensive and it is precisely these

steps which have been parallelized.

The dense assignment code of Jonker and Volgenant [19871 has been parallelized

using this strategy and run on a Symmetry S81 from Sequent Computer Systems, Inc.

This Symmetry S81 is a multiprocessor system with 32 Mbytes of shared memory and

twenty Intel 80386 cpu's. For this study, both codes used only integer arithmetic and did

not make use of math co-processors.

The empirical analysis with the parallel code is presented in Table 2 with the corre-

sponding speedups given in Table 3. Each time is the average for five runs. Note that the

speedup for the parallel code using a single processor ranged from a high of 0.87 to a low

of 0.73. This implies that the overhead associated with parallel processing for this code

ranged from 13% to 27%. As expected the speedups increased as the problem size

increases. For the largest problems, speedups of approximately four were achieved using

ten processors.

We have also experimented extensively with parallel versions of the auction algorithm,

but our results were not competitive with those presented in Table 2. We also developed

a modification of the shortest augmenting path code which used a Dijkstra two-tree short-

est path algorithm (see Helgason, Kennington and Stewart [1988]), but that system was

not competitive with the original shortest augmenting path implementation. At the termi-

- 63 -

nation of the classical Dijkstra shortest path algorithm, all the information required to

update the duals is available and the dual update can be executed very efficiently. The

two-tree Dijkstra method can obtain the shortest augmenting path faster than the classical

Dijkstra shortest path method; however, additional work is required to discover which

duals must be changed and by what amount. The overhead required for the dual variable

updates exceeded the potential benefits of the two-tree Dijkstra method for finding the

shortest augmenting path.

For the problem sizes and cost ranges analyzed, the times in Table 2 are the best

times that we have seen. The parallel shortest augmenting path code is a powerful tool

that can easily solve all 1,000,000 arc dense assignment problems in less than seventeen

seconds using six processors. The 1,000,000 arc dense assignment problem with a cost

range of [1,1000] required over five minutes for the parallel auction code of Barr and

Christiansen [1989] using six processors.

IV. SUMMARY AND CONCLUSIONS

The empirical analysis presented in this study indicates that for dense assignment

problems having a size up to 800x800, the shortest augmenting path software is faster

than the auction algorithm software. This conclusion was based on test runs with sixteen

randomly generated test problems with four different cost ranges and run on three differ-

ent serial machines. Contrary to the widely held belief that the auction algorithm per-

forms worse as the cost range increases, we found this not to be the case. We believe that

Professor Bertsekas' latest implementation (Version 1.0, June 1988) has eliminated this

difficulty. We did observe the difficulty with the "end game" in which an inordinate

amount of time is required to complete the last few assignments. The shortest augment-

ing path method has the attractive feature that each time a shortest path is calculated, one

new assignment is made. We found that the shortest augmenting path code was adversely

- 64 -

affected by an increasing cost range. As the cost range increases, larger trees must be

developed by Dijkstra's algorithm to obtain the shortest path from an unassigned man to

an unassigned job.

With only a moderate amount of code development, we parallelized the shortest aug-

menting path code of Jonker and Volgenant [1987] for the Sequent Symmetry S81.

Speedups of approximately four were achieved on 1200x1200 dense problems using ten

processors. Remarkably, 1,000,000 arc dense assignment problems were solved using

this parallel code in less than fifteen seconds (wall clock time). Even though this code

was developed for a particular multiprocessor system with shared memory, it can be used

with any shared memory parallel processing system.

- 65 -

REFERENCES

Ahuja, R., T. Magnanti, and J. Orin, [1988], "Network Flows," Sloan Working Paper No.
2059-88, Massachusetts Institute of Technology, Cambridge, MA 02139.

Akgul, M., [1988], "A Sequential Dual Simplex Algorithm for the Linear Assignment Prob-
lem," Operations Research Letters, 7, 155-158.

Balinski, M., [1985], "Signature Methods for the Assignment Problem," Operation,; -
search, 33, 527-536.

Balinski, M., [1986], "A Competitive (Dual) Simplex Method for the Assignment Problem,"
Mathematical Programming, 34, 125-141.

Barr, R. and M. Christiansen, [1989], "A Parallel Auction Algorithm: A Case Study' in the
Use of Parallel Object-Oriented Programming," To appear in R. Sharada, et al., l
of Recent Computer Advances on Operations Research, North-Holland Publishing Com-
pany, Amsterdam.

Barr, R., F. Glover and D. Klingman, [1977], "The Alternating Basis Algorithm for Assign-
ment Problems," Mathematical Programming." 13, 1-13.

Bertsekas, D., [1979], "A Distributed Algorithm for the Assignment Problem," Laboratory
for Information and Decision Sciences, Massachusetts Institute of Technology,
Cambridge, MA 02139.

Bertsekas, D., [1981], "A New Algorithm for the Assignment Problem," Mathematical Pro-
gramming, 21, 152-171.

Bertsekas, D., [1987], "The Auction Algorithm: A Distributed Relaxation Method for the
Assignment Problem," Technical Report LIDS-P-1653, Massachusetts Institute of Tech-
nology, Cambridge, M.A.

Bertsekas, D., and J. Eckstein, [1988], "Dual Coordinate Step Methods for Linear Network
Flow Problems," to appear in Mathematical Programming. Series B.

Derigs, U., [1985], "The Shortest Augmenting Path Method for Solving Assignment Problems
- Motivation and Computational Experience," Annals of Operations Research, 4, 57-102.

Gabow, H., [1985], "Scaling Algorithms for Network Problems," Journal of Computer and
System Sciences, 31, 148-168.

Glover, F., R. Glover and D. Klingman, [1986], "Threshold Assignment Algorithm," Mt_-
matical Programming Study, 26, 12-37.

Goldfarb, D., [1985], "Efficient Dual Simplex Algorithms for the Assignment Problem,"
Mathematical Programming, 33, 187-203.

- 66 -

Helgason, R., J. Kennington and D. Stewart, [1988], "Dijkstra's Two-Tree Shortest Path
Algorithm," Technical Report 88-OR-13, Department of Operations Research and Engi-
neering Management, Southern Methodist University, Dallas, Texas 75275.

Hung, M., [1983], "A Polynomial Simplex Method for the Assignment Problem," Operations
Research. 31, 595-600.

Hung, M. and W. Rom, [19801, "Solving the Assignment Problem by Relaxation," Q0...-
tions Research, 28, 969-982.

Jonker, R. and T. Volgenant, [1987], "A Shortest Augmenting Path Algorithm for Dense and
Sparse Linear Assignment Problems," Computing, 38, 325-340.

Kennington, J. and R. Helgason, [19801, Algorithms for Netwvork Programming, John Wiley
and Sons, New York, NY.

Kuhn, H., [1955], "The Hungarian Method for the Assignment Problem," Naval Research
Logistics Ouarterly, 2, 83-97.

Kuhn, H., [1956], "Variants of the Hungarian Method for Assignment Problems,"
Research Logistics Ouarterlv, 3, 253-258.

McGinnis, L., [1983], "Implementation and Testing of a Primal-Dual Algorithm for the As-
signment Problem," Operations Research, 31, 277-291.

Orlin, J. and R. Ahuja, [1988], "New Scaling Algorithms for the Assignment and Minimun
Cycle Mean Problems," Technical Report, Sloan School of Management, Massachusetts
Institute of Technology, Cambridge, MA 02139

Perry, E., [1988], "Programming Assignment Algorithms on Parallel and Vector Machines,"
Technical Report Ford Aerospace Corp., Colorado Springs, CO 80908.

Phillips, C. and S. Zenios, [1988], "Experiences with Large Scale Network Optimization on
the Connection Machine," To appear in R. Sharada, et al., Impact of Recent Computer
Advances on Operations Research, North-Holland Publishing Company, Amsterdam.

Rardin, R., [19861, "Private Communication."

- 67 -

W, El t-C 0\ I-C l t

Cu >

kn 00 C _ _0_ _ 0_ _ _ _0_ _N_ _ t_ _V)_

r.-4 N en -4

N> 00 t\0 eq "Nn
\C 000 -\ ctt) N) r-I% ,- \ c 4-

C;cs'i W;t: 6 6 4 6 ;Ir

V0\0\ 141 W)N~- V 0O\ k -,~ 00 T-

r- C1) '. N 0

Pap 2 -- 0

00 C 00- o0'rn C7\l It mM00 \0 0-0\ce N

M_- T- T-40-- N\~ ' I'd, It x 0 ~ t 0

000 000000 00

00 000 00 -t00 0000 n\0 C

cl l-i i Ci \0 i lii C;C 1 r:C ~ li06i *
- 0000000000 0000i0000

0) CD0C > C 00 C 0 0C0 C> C) C> H>C C >C >C C

.:!C O .- ! - RO N OR4 N

V) 00 -4O Nt ICcqC\V*_
PCTAV- - N O-4

IctV-) o1%0 o110-- C\ 0000 C

C\ t - nT- l \00 O\)Nc t

C\ !t-4r4 C)0 0C

'Ri \0- \00 >.* 0Nr
w) \6 li 6 \ -

C14 N 9

pi000 qt C t-Nt-0 \c

Q ~ '-IN

C) m- r-_00_m__ _ _ m_ _>V__ _ _ _\

W m > CN - _- C)00 (4 0O\Nq"-

\,cm) I"-~ ~ Nrl-C - 0 0m\

QF) CV t-C\C1 d~- O) 4C
C) _ ctr; tr 0 66C;t: i

0* \0 W') -4 V- \0 CN C) C> N r-N

0l 1-4~o rcnn %n

\0~ W') t- N n N cn t-4 CD C> \0 N

-nc 00 treno~ t-ItC00-

C14Cf) %n 14 l -o 00 0c\0C

4)CJ4 Ne I- N I*- o t it -4 00

0>C 0 C 00
C>00 0 00C 00 C

C >000 C 000 0C)0 0

0rl T- T-4 r-4 V-Y
4 4 4

v-4 r--4 r-4 -4

0 0 0>
0o V-4N

V-4 q

o 00 k 11 I'- 0 I~) en C) m 0 C

r- -r4" -) ctV

0

m -et0Cf)r-NermN

m0I - d I! W) \"4 W)r 1 '
I-c nCI 6(i l -

4I)

r0W) r n) n 0 00 r-00

C> C:J _> C:_

.1.; ld C ! - "- N

C14 IooI ~ It m m11 1

r- -4 - - - 4 - 1 -4 - ; 1- ; 1

0C 0
)0 0 00 00>Q > C

000 00 0

C> C>CUC

C)0 >0 0 0>C

0 0 0
0) ->

Technical Report 88-OR-21

SOLVING GENERALIZED NETWORK
PROBLEMS ON A SHARED

MEMORY MULTIPROCESSOR

by

J. Kennington
R. Muthukrishnan

Department of Operations Research and Engineering Management
School of Engineering and Applied Science

Southern Methodist Univeristy
Dallas, Texas 75275

November 1988

Comments and criticisms from interested readers are cordially invited.

-71-

ABSTRACT

The objective of this investigation was to analyze simplex based algorithms for the gener-

alized network problem in both the sequential and parallel computational environment. In

comparisons with MPSX, it was shown that a generalized network code is ten times faster
than this general linear programming system. It was also shown that relaxing the restric-

tion that at least one of the multipliers associated with an arc be one (minus one), results

in an additional computational expense of ten percent. A parallel asychronous primal
simplex algorithm was developed and tested on a Sequent Symmetry S81. Test problems

having two thousand nodes and fifty thousand arcs were solved in from three to four

minutes using a single cpu and in less than two minutes using eight cpu's.

ACKNOWLEDGMENT

This research was supported in part by the Department of Defense under Contract Num-
ber IDA 903-86-C0182, the Air Force Office of Scientific Research under Contract
Number AFOSR 87-0199, and the Office of Naval Research under Contract Number

N00014-87-K-0223

-72-

I. INTRODUCTION

The genrlie network problem (also called the flow Mith gajM mQdel) in its most

general form is defined as follows:

minimize cx (1)

s.t. Gx = r (2)

0-- x< u, (3)

where G is an ffi"xf matrix having at most two nonzero entries in each column, c is a

ixff vector of costs, r is an ffxl vector of right-hand-sides, and u is an ffxl vector of

upper bounds. Many authors place the additional restriction on (1)-(3) that at least one

of the nonzero entries in each column of G be a one (minus one). Not all instances of

(1)-(3) can be scaled to meet this restriction and the new code developed for this investi-

gation does not require this restriction. Associated with each matrix G is a graph [V,El,

where V is a set of nodes and E is a set of pairs of nodes (edges). The nodes correspond

to the rows oi G and the edges correspond to columns of G. If the kth column of G,

G(k), has a single nonzero entry in row i, then the corresponding edge is denoted by (i,i).

If G(k) has two nonzero entries in rows i and j, then the corresponding edge is denoted by

(i,j).

1.1. Survey of Literature

The graphical structure of a basis for G allows the use of labeling procedures for basis

representation. Glover, Klingman, and Stutz [1973] developed the first specialized primal

simplex code (NETG) which exploited this graphical structure. Many theoretical and

computational improvements have been made to this system over the last fifteen years

(see Glover, Hultz, Kiingman, and Stutz [1978] and Elam, Glover, and Klingman [1979]).

A similar implementation was also developed by Langley [1973]. Adolphson and Heum

[1981] presented computational results with their generalized code which used an exten-

sion of the threaded index method of Glover, Klingman, and Stutz [1974]. Brown and

- 73 -

McBride [19841 presented the details of their generalized network code (GENNET) and

offered the source code to our university for a nominal price. Tomlin [1984] developed

the first assembly language code which is part of Ketron's MPS I system. Recently,

other codes have been developed by Enquist and Chang [1985], Mulvey and Zenios

[1985], and by Ali, Charnes, and Song [1986]. The first parallel generalized code was

developed by Chang, Enquist, Finkel, and Meyer [1987] for the Wisconsin Crystal multi-

computer and the second by Clark and Meyer [19871. The first C language code was

developed by Nulty and Trick [1988]. Another assembly language code has been devel-

oped by Chang, Chen, and Chen [1988]. The code discussed in this paper is one of eight

developed by Muthukrishnan [1988]. A summary of the available software may be found

in Table 1.

1.2. Parallel Computing Machines

The UNIVAC 1, which appeared in 1951, was the first commercially produced com-

puter. Four generations of computer development have since passed with each generation

exhibiting major improvements over the previous one. These improvements were made

possible in part by the introduction of greater parallelism at all levels of the computer

architecture. The first generation machines were built with vacuum tubes and electrome-

chanical relays. The second generation machines were build with discrete diodes, transis-

tors, and printed circuit boards. Integrated circuits were introduced in the third genera-

tion machines and large scale integration is used in the fourth generation machines.

The first significant work in the area of parallel processing occurred in the 1970's with

the development of the C.mmp at Carnegie Mellon University. In early digital computers,

the memory and the central processing unit were made of different materials. Memory

was cheaper than processing and the early parallel machines consisted primarily of mini-

computers with small address spaces and limited computing power. Hence, they were

- 74 -

fairly expensive slow machines compared to a single processor mainframe. A technologi-

cal breakthrough made possible the fabrication of both the memory and the cpu from the

same material. The cost of the processors was reduced and it became possible in the

1980's to build inexpensive multiprocessor machines. Now over twenty different parallel

computers are commercially available.

Parallel machines are classified according to the operational characteristics of both

instruction and data streams. The stream characteristics are categorized as follows:

single instruction stream (SI), multiple instruction stream (MI), single data stream (SD)

and multiple data stream (MD). In SISD machines, a single stream of instructions oper-

ates on a single stream of data. This is the classical von Neuman architecture which is

used in the following machines: VAX 11/780, IBM 3081, and Cray-1. Machines which

use array processors, such as the CDC Cyber 205 and IBM 3090-600, and The Connec-

tion Machine CM-1 with 64,000 one bit processcr- are called S1MD machines. From an

algorithm designers point of view, the most interesting machines are MIMD machines. In

these machines, each processor can execute different instructions on different data seg-

ments simultaneously. Among others, the Sequent Symmetry S81, Encore Multimax,

Intel iPSC hypercube, FPS T-20 hypercube, Butterfly, Alliant FX/8 and AT&T KORBX

belong to this category.

MIMD machines can be further classified as either multiprocessors or multicomputers.

Multiprocessors have both private and shared memory while multicomputers have only

private memory. Hence, communication among cpu's on a multicomputer is through the

slower procedure of message passing. Within the class of multiprocessors further distinc-

tion can be made depending on the processor interconnection pattern as tightly coupled

and loosely coupled machines. The new hardware developed by Alliant, Cray, Encore,

and Sequent are tightly coupled shared memory IIMD machines.

- 75 -

1.3. Objective of the Investigation

The primary objective of this investigation was to develop and computationally test a

parallel primal simplex based algorithm for the generalized network problem. This model

was selected for investigation due to the fact that the basis for a generalized network

problem decomposes naturally into a block diagonal structure which can be easily main-

tained and updated using graphical data structures (labeling procedures). This stud)

begins with the excellent generalized network code, GENNET, developed by Brown and

McBride [19841.

- 76 -

II. PARALLEL CONSTRUCTS

Parallel algorithms use modules (subroutines) which may be executed in parallel.

Suppose there are r processors available for use. The se p parallel programming

construct generates r -1 clones of the running process and places them in a wait state.

The parallel operations are initiated by the main program using statements of the form:

for processors = 1 to r , fork module WORK.

The main program and the r -1 clones each execute module WORK. Processing in the

main program continues only after all processors complete execution of WORK and the

clones return to a wait state until the next fork is executed. In order to allow for mutual

exclusion of certain sections of code, variables can be designated as locks. Variables so

designated can assume two states: locked (1) or unlocked (0). Locked sections of code

appear as follows:

lock [s]

unlock [s].

If a process reaches a lock statement and s=O, then it sets s to 1 and continues. Other-

wise, the process spins until s=O, then it sets s to 1 and continues. When a process

reaches an unlock statement it sets s to 0. Two processors can never execute the code

between the lock and unlock statements simultaneously.

- 77 -

III. PARALLEL SIMPLEX FOR GENERALIZED NETWORKS

The best algorithm for solving the generalized network problem is a specialization of

the primal simplex method which exploits the underlying graphical structure of the

model. By a rearrangement of rows and columns, every basis for (1)-(3) can be placed in

the block diagonal form

B1

B2

Bp_

where each Bi , i=1, ... , p, is either lower triangular or nearly lower triangular with only

one element above the diagonal. Furthermore, each component Bi corresponds to a con-

nected graph and all the simplex operations can be carried out directly on this graph. The

simplex algorithm for this model in its most general form is presented below:

Primal Simplex Algorithm for Generalized Networks

Input:

1. A graph [V,E].

2. A cost c[e] and arc capacity u[e] for each e E E.

3. The generalized constraint matrix G.

4. A requirement r[n] for all n E V.

Output:

1. The termination type indicator # and flow T [e] for all e E E. (f6 = 1 implies that

the problem is unbounded, ,P = 2 implies that the problem has no feasible solution,

and 5 = 3 implies that the optimal solution is given in Y [e] for all e E E.)

- 78 -

Working Enti'ies:

1. An array 7r In], the dual variable for each n E V.

2. An array yin], the component of the updated column for each n e V.

3. A set EB of basic arcs.

4. A matrix B of columns of G corresponding to EB.

Procedure SIMPLEX

begin

1. let EB C E denote the set of basic arcs with corresponding basis B, and let

T [e] denote the flows for all e E E;

2. 04 ---0;

3. 1 '- CBB - ', where CB denotes the costs associated with EB;

4. call module PRICE;

5. if P ;eO. then terminate;

6. cali 'ule RATIO;

7. if P * 0, then terminate;

8. call module UPDATE;

9. go to 4.

end.

Procedure PRICE

begin

1. PL - {j ' OTG) - C [j] > 0, xlj]I = 0, j E E",EB};

2. PU - U : OG) - c[j] < 0, Xj] = u[j], J E EEB);

3. if PL U Pu = 0, then

4. if EB contains an artificial variable having flow > 0, then -2; otherwise,

- 79 -

fi4--3;

else

5. select k E PL U PU:;

6. if k E P-, then 6 --1; otherwise, 6 -- 1;

end if

end.

Procedure RATIO

begin

1. y - B-G(k)

2. A, - min{ I : a(y[i]) = 6, G(j) = B(i), i =1,...,IVI};fy[i]l

3. A,- min{ uti] - , : •- a(y[i]) =6, GO) =B(i), i= 1...jV);

4. A 4- min {A, A2 , U[k]};

5. if A=c, then fl*-I;

end.

Procedure UPDATE

Vegin

1. x--k] -- x--k] + A 6

2. Xlj - xij] - A6yIiI for i = 1, ... , IVI and GO) =B(i);

3. if A u[k], then

4. UL = {j: x-] - 0, U(yi]) = 6, GO) = B(i);

5. Uu = {j : x-ij] u[j], - o(y[ij) = 6, GO) = B(;));

6. select r E UL U UU

- 80 -

7. EB - (EB U (k))\{r) and update B so that it corresponds to EB.

8. ;T ,---CB B- 1, where CB denotes the costs associated with EB;

9. end if

end

Since the components of the partitioned basis

B1

B2

correspond to connected components of a graph, the partitioning is easily maintained

after a pivot is performed. Since each column of G has at most two nonzero entries, a

simplex pivot can affect at most two of the p partitions. Therefore, multiple processors

can be performing pivot operations simultaneously on different partitions of the basis. In

this parallel implementation of the simplex algorithm, all processors execute the simplex

method asynchronously and a description of the method requires only an explanation of

the operation of a single processor.

For a processor, the pricing module is called and some edge which prices favorably is

selected for flow change. If the component(s) associated with this edge are locked, then

the processor returns to the pricing module. Otherwise, the component(s) are locked and

the candidate edge is epriced. If the candidate edge prices unfavorably during the repric-

ing stage, the component(s) are unlocked and the processor returns to the pricing module.

Pivoting is executed only if the candidate edge prices favorably when repriced. After

returning from the update module, the affected components are unlocked. The parallel

simplex algorithm specialization in its most general form is presented below:

- 81-

Parallel Primal Simplex Algorithm for Generalized Networks

Input:

1. A graph [V,E].

2. A cost c[e], arc capacity u[e], from (tail) node f[e], and to (head) node t[e] for all

eEE.

3. The genecalized constraint matrix G.

4. A requirement r[n] for all n E V.

5. The number of processors, r , available for use.

Output:

1. The termination type indicator P and flow K [e] for all e E E. (fP =1 implies that

the problem is unbounded, P =2 implies that the problem has no feasible solution, and

fi =3 implies that the optimal solution is given in 5'[e] for all e e E.)

Working Entities:

1. An array a1 [n], the dual variable for each n E V.

2. An array y[n], the component of the updated column for each n E V.

3. A set EB of basic arcs.

4. A matrix B of columns of G corresponding to EB.

5. A variable s to be used as a lock.

6. An array comp[n] which gives the component number in which n G V is a

member.

7. An array lockc[m] which has the value of one if component m is busy and zero,

otherwise.

- 82 -

Procedure PARALLEL SIMPLEX

begin

1. let EB C E denote the set of basic arcs with corresponding basis B, and let T [e)

be the flows for all e E E;

2. lockc[n]J- 0 for all n E V;

3. let B be partitioned into

B,
B2

BP

corresponding to the connected components of [V, EB] and set comp[n] equal

the partition number for which node (row) n is a member;

4. et ro r

5. for processors = 1 to r , fork module SOLVER,

end.

Procedure SOLVER

local data: 0, k, 6, A, F, f, UL, Uur

begin

1. / 4-0;

2. ,r - CBB - 1, where CB denotes the costs associated with EB;

3. call module PRICE;

4. if Pi d 0, then return;

5. locks

6. if lockc[comp[f[kJ]] = 0 and lockc[comp[t[kfl] = 0, then;

- 83 -

7. (comment: lock components associated with the entering arc)

8. lockc[compf[kf]] -- 1;

9. lockc[comp[t[k]]] -- 1;

(comment: reprice entering arc)

10. if (xk] = 0 and rG(j) - c[j] _ 0) or (x-[k] = u[k] and G(j) - c[j] 0)

then

(comment: entering arc does not price favorable, some other processor

modified dual after pricing)

11. lockctcomp[flkf]] - 0;

12. lockc[comp[t[k]]- 0;

13. unlock [s];

14. go to 3;

15. end if

16. unlock s;

17. else

18. unlock s;

19. go to 3;

20. end if

21. call module RATIO;

22. if Pi d 0, then return;

23. f',-comp[fk]]], F'-comp[t~k]]];

24. call module UPDATE;

25. update comp[n] for all n E Vto correspond to EB;

26. lockc[f]- 0, lockc[t]- 0;

27. go to 3;

end

- 84 -

IV. COMPUTATIONAL EXPERIENCE

This investigation began with the excellent generalized network code of Brown and

McBride 11984] known as GENNET. This code requires that the problem be scaled so that

at least one of the nonzero entries in every column of G must be one. This restriction has

two disadvantages, (i) it means that not all instances of (1)-(3) can be solved with this

code and (ii) it is awkward to use this code as the continuous relaxation solver within a

branch-and-bound framework for integer generalized networks. That is, scaling an inte-

ger variable prior to application cf an integer solver requires special handling of that

integer variable. The modified code which allows for arbitrary nonzero entries in each

column of G is called GENFLO.

The computational experience comparing MPSX (the IBM proprietary mathematical

programming system), NETFLO (Kennington and Helgason [1980]), GENNET (Brown

and McBride [19843), and GENFLO on pure network flow problems may be found in

Table 2. The problem number refers to the NETGEN numbers (see Klingman, Napier,

and Stutz [1974]). These problems were all run on an IBM 3081-D24. The three special-

ized codes are written in FORTRAN and used the FORTVS compiler with OPT=2. All

times are in cpu seconds and exclude input and output.

NETFLO assumes that every column of G has two nonzero entries which are one and

minus one. GENNET assumes that every column has at most two nonzero entries and

one must be one. GENFLO assumes that every column has at most two nonzero entries

and MPSX makes no assumptions about the entries in G. For these fourteen test prob-

lems, NETFLO is sixty times faster than MPSX, GENNET is fifty times faster, and

GENFLO is forty times faster.

The computational experience comparing MIPSX, GENNET, and GENFLO on general-

ized i.etwork problems may be found in Table 3. The test problems were generated by a

- 85 -

modification of NETGEN called GNETGEN developed by Professor Klingman and col-

leagues at the University of Texas at Austin and loaned to us by Professor Glover and

colleagues at the University of Colorado in Boulder. Both specialized codes are ten times

faster than MPSX. The arbitrary second multiplier in GENFLO results in a computational

expense of approximately ten percent.

GENFLO has been parallelized using the asychronous parallel simplex method pre-

sented in Section 3 and run on the two parallel multiprocessor systems produced by Se-

quent Computer Corporation. The computational times are presented in Table 4 and the

speedups are presented in Table 5. Test problems G1 through G4 are grid problems and

R1 through R4 are random problems generated by GNETGEN. Problem C1 was gener-

ated with a modification of GNETGEN designed to produce problems with a large number

of components at optimality. The change involved modifying the cost range so that the

cost for random arcs dominated the cost for the arcs in the skeleton network. Problems

generated using this cost structure yielded a large number of components (partitions) in

the optimal basis. The column entitled "components at optimality" gives the number of

partitions in the optimal basis. All runs began with an all artificial start. Since the

asychronous simplex algorithm follows a different path in each parallel run, the times

(and number of iterations) for solving a given problem may vary substantially. To ac-

count for variability, each problem was solved three times and the average is reported.

The speedups varied from approximately two to three using eight processors.

- 86 -

V. SUMMARY AND CONCLUSIONS

The development of relatively inexpensive parallel computers has generated wide-

spread interest in the development of new optimization algorithms for such machines.

Although parallel computers come in a variety of architectures, the popularity of multi-

ple-instruction multiple-data (MIlMD) machines can be attributed, in part, to the ease

with which codes intended for sequential computers can be ported to these machines. In

this study, an asychronous simplex method for the generalized network problem has been

implemented and computationally tested on a Sequent Balance 21000 and a Sequent Sym-

metry S81. A speedup of approximately three was achieved on a 90x90 grid problem

having 8100 nodes and 16,020 arcs using eight cpus. Random problems having 2000

nodes and 50,000 arcs yielded speedups of approximately two using eight cpus.

- 87 -

REFERENCES

Adolphson, D. and L. Heum, [1981], "Computational Experiments on a Threaded Index
Generalized Network Code," presented at the ORSA/TIMS National Meeting in Hous-
ton, Texas.

Ali, I., A. Charnes, and T. Song, [1986], "Design and Implementation of Data Structures
for Generalized Networks," Journal of Information and Optimization Sciences, 7,
81-104.

Brown, G.G. and R.D. McBride, [19841, "Solving Generalized Networks," Management
Science, 30, 1497-1523.

Chang, M., M. Cheng, and C. Chen, [1988], "Implementation of New Labeling Proce-
dures for Generalized Networks," Technical Report, Department of CS/OR, North
Dakota State University, Fargo, ND.

Chang, M., M. Enquist, R. Finkel, and R. Meyer, 119871, "A Parallel Algorithm for Gen-
eralized Networks," Computer Science Technical Report #642, Department of Com-
puter Science, University of Wisconsin-Madison, Madison, Wisconsin.

Clark, R. and R. Meyer, [1987], "Multiprocessor Algorithms for Generalized Networks,"
Computer Science Technical Report #739, Department of Computer Science, Univer-
sity of Wisconsin-Madison, Madison, Wisconsin.

Elam, J., F. Glover, and D. Klingman, [1979], "A Strongly Convergent Primal Simplex
Algorithm for Generalized Networks," Mathematics of Operations Research, 4, 39-59.

Enquist, M., and M. Chang, [1985], "New Labeling Procedures for the Basis Graph in
Generalized Networks," Operations Research Letters, 4, 151-155.

Glover, F., J. Hultz, D. Klingman, and J. Stutz, [1978], "Generalized Networks: A Fun-
damental Computer Based Planning Tool," Management Science, 24, 1209-1220.

Glover, F., D. Klingman, and J. Stutz, [1973], "Extension of the Augmented Predecessor
Index Method to Generalized Network Problems," Transportation Science, 7, 377-384.

Glover, F., D. Klingman, and J. Stutz, [1974], "The Augmented Threaded Index Method
for Network Optimization," INFOR, 12, 293-298.

Kennington, J. and R. Helgason, [1980], Algorithms for Network Programming, John
Wiley and Sons, Inc., New York, New York.

Klingman, D., A. Napier, and J. Stutz, [1974], "NETGEN: A Program for Generating
Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Prob-
lems," Management Science, 20, 814-821.

- 88 -

Langley, W., [1973], "Continuous and Integer Generalized Flow Problems," unpublished
dissertation, Department of Industrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, Georgia.

Mulvey, J. and S. Zenios, [19851, "Solving Large Scale Generalized Networks," Journal
of Information and Optimization Sciences, 6, 95-112.

Muthukrishnan, R., [1988], "Parallel Algorithms for Generalized Networks," unpublished
dissertation, Department of Operations Research and Engineering Management,
Southern Methodist University, Dallas, Texas.

Nulty, W. and M. Trick, [1988], "GNO/PC Generalized Network Optimization System,"
Operations Research Letters, 7, 101-102.

Tomlin, J., [19841, "Solving Generalized Network Models in a General Purpose Mathe-
matical Programming System," Presented at the Joint National Meeting of ORSA/
TIMS in Dallas.

- 89 -

Table 1. Generalized Network Codes

Code Language Authors Year

NETG FORTRAN Glover, F. 1973
Klingman, D.
Stutz, J.

FORTRAN Langley, W. 1973

FORTRAN Adolphson, D. 1981
Heum, L.

GENNET FORTRAN Brown, G. 1984

McBride, R.

GWHIZNET ASSEMBLER Tomlin, J. 1984

GRNET FORTRAN Enquist, M. 1985
Chang, M.

LPNETG FORTRAN Mulvey, J. 1985
Zenios, S.

FORTRAN All, I. 1986
Charnes, A.
Song, T.

FORTRAN Chang, M. 1987
Enquist, M.
Finkel, R.
Meyer, R.

PGRNET FORTRAN Clark, R. 1987
Meyer, R.

GNO/PC C Nulty, W. 1988
Trick, M.

GRNET-A ASSEMBLER Chang, M. 1988
Chen, M.
Chen C.

GENFLO FORTRAN Muthukrishnan, R. 1988

C.i Coio66 C6
U- e'Jz

o 2 0 f Oc) ~ Of-0 r U' lO N N

V- 0 C~ C~ V) CJ

M CI f) F D lt'O * ~ LO)

zz
r" 0 - CO OQ .4 OtC ((D C'' -M0-T-M0 c

0.c C\ c'J~ Y) V

0 cle CMJ

0 a66666
I-

Z C 0. 0 C)C-4 -0) r- U)O)u) t- v-(D CI 0)

o I-

00E C)Cl6 0 l1-L C l ;1 - 5L C;

Z2 - - 0 . N.>0Nwm1- O0

r l-M , ItT M M it (U)(D N c

00

CCi)

I-l c 14 '~ Yq w (/) 0 0 0 O Lf

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/>

<
U- o C> m C)co r o.z f .- L

Lo m mm m w0 Uf)

0 0 OCJf C\i' CIS(D
U-

w
o ~) Lo o0)NL V -

0 LOCD) YJ0L- 0LDCrI
Z CJ-C00) C co

a) CD 0Cv) 0 U) 0 O) (Y

o LOU) MflC)-Oi- C
cu 4o CF It qt C C~ 0) o 0)

0 0000000cm o T

V C C 0 C>C) 0- C>

4) U)

) CL

0- . u.o U' O -C>

U) 0 0 0 C> 0 0 0
0)C C >z)C

U)0 00 LO N qld- I*

co -0)0)R02 ('- IL') U)
') fN m L U)-) 00 N

('N 0 O LO-) 0
0 LO r- 0) 0D - 0 Ic CD -

0)c) Dc 0CC) 02-DN 0) t

CD(D
0 00 c~r C)0 D N C)

C o 0)C U() N 0 0 c

E UC>o~ c o c o ..C

E 2 q 0000 w V)~ 0

U)C) N U~'- 0

0~ 00 U)~ Cow0

qq m Cf qq t'JO)N UD '5

.~C)U)'(D 0) OD oCQCj~ 0) c

(D,

0-0OD C L c 1r)CCM o00 r- tu
U r- T0) r d- UlO0 U) OD

CCD -;L66 CD C 0) V c6
UC) N co cm 0-2C (02c

M 0 -r- M to m a

os C) 0 - co U)00 U)0 m1 0

.2;j f<Q 06C 0CD 0 6 CD N 0z0)

0

0SE UC'00 C) C~J'C>

0 a C1)CD0

0 00 00 0
C") 0 0 C'J 0000 0 C00 C F)a

0 -9 (0 I)U)0 0 0 .
00 000co0 00C >0 0 E

m~ 000(>0 000 0>
o~~T U))' 00

0 C>J CD 0 0 C)C'J 0 E

0 C(! 0D0 05 >C
0 U)M "r - D0 0 C

a- o o c ~ jClC o L

'-N (q C) 0) 0 C U)

Or) LDf) cOD CD ODO(D 0>

U) 0 q) JC CC)Cf 0 V CIP)

Co

x a

0 qctLO C ~ - q y

E m c

m mC > 00 cm C It 1" co

a.
cm '' 0 0 to (D V

0i 0>000 C0 000 0
G> 000 0 >0 0 0 0

0.>

CL ' '

CA C
Q .QE uIC~) mC - 00

0 C,) CDi
0 0

cu 0 00C0 0 0 00 0
0 toC44"cm 0C)000 0)

CY 0COcDo0 0 0 00 0)
I-l LO) Lo00) 0)

C) 0 000 0 0 00 0>
0C 0000 0 00C0 C0

0 U-) C) 1tT- >0 000 0
N C'I'(D O 4C C\ J cJcD W)

E
0 aCJ~~ 0 a:cJc ccc

